(2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的

(2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四... (2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论. 展开
 我来答
无聊460
推荐于2016-12-01 · TA获得超过307个赞
知道答主
回答量:144
采纳率:81%
帮助的人:64万
展开全部
(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,
∵∠BAE=∠BCE,∠AED=∠CED,
∴∠CBE=∠ABE,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=∠BAD=90°,AB=CD,
∴∠CBE=∠ABE=45°,
∴△ABD与△BCD是等腰直角三角形,
∴AB=AD=BC=CD,
∴四边形ABCD是正方形;

(2)当AE=2EF时,FG=3EF.
证明:∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∵AE=2EF,
∴BE:DE=AE:EF=2,
∴BG:AD=BE:DE=2,
即BG=2AD,
∵BC=AD,
∴CG=AD,
∵△ADF∽△GCF,
∴FG:AF=CG:AD,
即FG=AF=AE+EF=3EF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式