(2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的
(2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四...
(2012?内江)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论.
展开
1个回答
展开全部
(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,
∵∠BAE=∠BCE,∠AED=∠CED,
∴∠CBE=∠ABE,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=∠BAD=90°,AB=CD,
∴∠CBE=∠ABE=45°,
∴△ABD与△BCD是等腰直角三角形,
∴AB=AD=BC=CD,
∴四边形ABCD是正方形;
(2)当AE=2EF时,FG=3EF.
证明:∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∵AE=2EF,
∴BE:DE=AE:EF=2,
∴BG:AD=BE:DE=2,
即BG=2AD,
∵BC=AD,
∴CG=AD,
∵△ADF∽△GCF,
∴FG:AF=CG:AD,
即FG=AF=AE+EF=3EF.
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,
∵∠BAE=∠BCE,∠AED=∠CED,
∴∠CBE=∠ABE,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=∠BAD=90°,AB=CD,
∴∠CBE=∠ABE=45°,
∴△ABD与△BCD是等腰直角三角形,
∴AB=AD=BC=CD,
∴四边形ABCD是正方形;
(2)当AE=2EF时,FG=3EF.
证明:∵四边形ABCD是正方形,
∴AB∥CD,AD∥BC,
∴△ABE∽△FDE,△ADE∽△GBE,
∵AE=2EF,
∴BE:DE=AE:EF=2,
∴BG:AD=BE:DE=2,
即BG=2AD,
∵BC=AD,
∴CG=AD,
∵△ADF∽△GCF,
∴FG:AF=CG:AD,
即FG=AF=AE+EF=3EF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询