若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{bn}
若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn...
若等差数列{an}中,a1=3,a4=12,{bn-an}为等比数列,且数列{bn}满足b1=4,b4=20.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.
展开
展开全部
(1)设等差数列{an}的公差为d,∵a1=3,a4=12,∴12=3+3d,解得d=3.
∴an=a1+(n-1)d=3+3(n-1)=3n.
∵{bn-an}为等比数列,设公比为q,
又数列{bn}满足b1=4,b4=20.
∴b4?a4=(b1?a1)q3,即(20-12)=(4-3)q3,解得q=2.
∴bn?an=2n?1,
∴bn=3n+2n-1.
(2)由(1)可得数列{bn}的前n项和=3(1+2+…+n)+1+2+22+…+2n-1
=
+
=
+2n-1.
∴an=a1+(n-1)d=3+3(n-1)=3n.
∵{bn-an}为等比数列,设公比为q,
又数列{bn}满足b1=4,b4=20.
∴b4?a4=(b1?a1)q3,即(20-12)=(4-3)q3,解得q=2.
∴bn?an=2n?1,
∴bn=3n+2n-1.
(2)由(1)可得数列{bn}的前n项和=3(1+2+…+n)+1+2+22+…+2n-1
=
3n(n+1) |
2 |
2n?1 |
2?1 |
=
3n(n+1) |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询