线性代数:是不是如果r(A)=1,那么A的特征值中有且仅有一个非零??如何证明? 5

 我来答
newmanhero
2015-02-15 · TA获得超过7770个赞
知道大有可为答主
回答量:1850
采纳率:100%
帮助的人:939万
展开全部
若r(A) = 1 ,则 A的特征值中有且只有一个非零。

证明方法有很多。
1、将特征行列式 |λE-A| = 0 ,利用行列式定义Σ(-1)^t a1p1a2p2...anpn 展开为 λ^n-Σaiiλ。
2、A可以写成两个行向量α、β的乘积,A=αTβ ,α=(a1,a2,...,an),β=(b1,b2,...,bn)

把矩阵A写成具体aibj形式的矩阵,然后利用行列式性质,将|λE-A|化为三角形行列式,得到
|λE-A|=(-1)^n-1 λ^n-1(Σaibi-λ)=0 ,故λ1=λ2=...=λn-1=0,λn=Σaibi

newmanhero 2015年2月15日16:59:34

希望对你有所帮助,望采纳。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式