相关系数越大,说明两个变量之间的关系就越强吗

 我来答
海边的鸟儿啊
高粉答主

2019-07-30 · 希望能自由的飞翔
海边的鸟儿啊
采纳数:1110 获赞数:581632

向TA提问 私信TA
展开全部

相关系数越大,说明两个变量之间的关系就越强。

样本的简单相关系数一般用r表示,计算公式为:r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。

r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。若r=0,表明两个变量间不是线性相关,但有可能是其他方式的相关(比如曲线方式)。

利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对总体相关系数为0的原假设进行检验。若t 检验显著,则拒绝原假设,即两个变量是线性相关的;若t 检验不显著,则不能拒绝原假设,即两个变量不是线性相关。

扩展资料

一些实际工作者用非居中的相关系数(与Pearson系数不相兼容)。

例如:

假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。

则有两个有序的包含5个元素的向量x、y:x = (1, 2, 3, 5, 8) 、 y = (0.11, 0.12, 0.13, 0.15, 0.18) 使用一般的方法来计算向量间夹角(参考数量积)。

上面的数据实际上是选择了一个完美的线性关系:y
= 0.10 + 0.01 x。因此皮尔逊相关系数应该就是1。

把数据居中(x中数据减去 E(x) = 3.8 ,y中数据减去E(y) =
0.138)后得到:x = (−2.8, −1.8, −0.8, 1.2, 4.2)、 y = (−0.028, −0.018, −0.008,
0.012, 0.042)。

参考资料来源:百度百科-相关系数

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
禾鸟heniao
2019-05-29 · TA获得超过4.9万个赞
知道大有可为答主
回答量:2万
采纳率:59%
帮助的人:768万
展开全部

相关系数越大,说明两个变量之间的关系就越强。当相关系数为1时,两个变量其实就是一次函数关系。

相关系数介于0与1之间,用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。

扩展资料

(1)相关系数的应用

1、概率论

例:若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρXY。

解:由于X+Y=n,则Y=-X+n,根据相关系数的性质推论,得ρXY = − 1。

2、企业物流

例:一种新产品上市,在上市之前,公司的物流部需把新产品合理分配到全国的10个仓库,新品上市一个月后,要评估实际分配方案与之前考虑的其他分配方案中,是实际分配方案好还是其中尚未使用的分配方案更好。

通过这样的评估,可以在下一次的新产品上市使用更准确的产品分配方案,以避免由于分配而产生的积压和断货。表1是根据实际数据所列的数表。

通过计算,很容易得出这3个分配方案中,B的相关系数是最大的,这样就评估到B的分配方案比实际分配方案A更好,在下一次的新产品上市分配计划中,就可以考虑用B这种分配方法来计算实际分配方案。

3、聚类分析

例:如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品间的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用A1,A2,...,A9表示)的6个性状资料见表2,作相关系数计算并检验。

由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 0.8982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。

(2)相关系数的缺点:

需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。

因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。

参考资料来源

百度百科-相关系数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-05-26
展开全部
相关性的强度确实是用相关系数的大小来衡量的,但相关大小的评价要以相关系数显著性的评价为前提,我们首先应该检验相关系数的显著性,如果显著,证明相关系数有统计学意义,下一步再来看相关系数大小,如果相关系数没有统计学意义,那意味着你研究求得的相关系数也许是抽样误差或者测量误差造成的,再进行一次研究结果可能就大不一样,此时讨论相关性强弱的意义就大大减弱了。
在满足相关系数显著的条件下,相关系数越大,相关性就越强,这没错
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2019-04-18 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30584 获赞数:146321
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
相关系数介于 -1 与 1 之间,是衡量两个变量之间线性关系程度的量,
相关系数越大,说明两个变量之间的线性关系越强。
当相关系数为 1 时,两个变量其实就是一次函数关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
焉建茗3e
2019-12-23 · TA获得超过5549个赞
知道答主
回答量:3.1万
采纳率:30%
帮助的人:2014万
展开全部
相关系数越大,两个变量之间的关系就越强
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式