高分追加求高考文科数学第二轮复习法

我是一名高三学生,在进入第二轮复习后发现数学的题目比第一轮要难得多,我根本我根本无从下手,请问哪位大哥大姐能帮帮小弟... 我是一名高三学生,在进入第二轮复习后发现数学的题目比第一轮要难得多,我根本我根本无从下手,请问哪位大哥大姐能帮帮小弟 展开
 我来答
帐号已注销
2022-06-03 · TA获得超过1038个赞
知道小有建树答主
回答量:1.9万
采纳率:77%
帮助的人:482万
展开全部

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

a350296377
2010-12-11
知道答主
回答量:21
采纳率:0%
帮助的人:17.1万
展开全部
分析法与综合法

一、学习目标

数学能力的核心是思维能力,而思维的形式是多种多样的,如观察、比较、分析、归纳、综合等等。思维过程中要善于展开两翼,这就是分析法和综合法。所谓分析法,就是要不断追索使结论成立的原固,而"因"必须是与题设、定理、公理、公式挂钩。即"由果执因"。所谓综合法就是"由因导果",即是根据已有的条件不断地推算、推理。且推导的方向是"结论"、"所需的结果",这两种方法必须在解题过程中,充分交错,运用得当。前因后果,紧紧相扣。往往使用了这两种方法,可以使矛盾解决,水到渠成。否则就会是盲人骑瞎马,左冲右突,解题杂乱不清。甚至梗塞,于事无补。无论是证明题、计算题或应用题。

二、例题分析

[例1]设函数 在点x0处可导,试求下列各极限的值。

思路分析:

在导数的定义中,增量Δx的形式是多种多样的,但不论Δx选择哪种形式,Δy也必须选择相应的形式,利用函数 在点x0处可导的条件,可以将已给定的极限恒等形转化为导数定义的结构形式。

解答:

[例2]证明:若函数 在点x0处可导,则函数在点x0处连续。

思路分析

从已知和要证明的问题中去寻求转化的方法和策略,要证明 在点x0处连续,必须证明 。由于函数在点x0处可导,因此,根据函数在点x0处可导的定义,逐步实现两个转化,一个是趋向的转化,另一个是形式(变为导数定义形式)的转化。

解法:

∴函数 在点x0处连续。

[例3]求函数 在x由1变为1.01时的改变量Δy与dy

解答

反馈

易发现,当Δx→0时,即函数在一点处的微分是函数增量的线性近似值Δy≈dy,这是微分的应用—用于近似计算。

三、练习题

(一)选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)。

1.下列函数中,不存在反函数的是

A.y=x2-2x+3(x≤0)

B.

C.

D.

2.设 ,N={第一或第四象限角},则

A.M=N

B.

C.

D.以上关系都不成立

3.定义在R上的函数f(x)满足:f(2+x)=f(2-x),若方程f(x)=0有且只有三个不等实根,且0是其中之一,则方程的另外两个根必是

A.-2,2

B.2,4

C.1,-1

D.-1,4

4.在复平面内,点A对应复数2,点B对应复数-1+i,将向量 绕点A按顺时针方向旋转90°,得向量 ,则点C对应复数为

A.3+3i

B.1+3i

C.1-3i

D.-1+i

5.在各项都是正数的无穷等比数列{an}中,首项a1=1,公比q≠1,且a2、a3、a5成等差数列,则{an}的各项和为

A.

B.

C.

D.

6.圆C:x2+y2+2x-6y-15=0与直线l:(1+3m)x+(3-2m)y+4m-17=0的交点个数为

A.0
B.1

C.2

D.个数与m的取值有关

7.在三棱台A1B1C1-ABC中,A1B1∶AB=1∶3,点M是侧棱A1A的中点,则截面CMB1把棱台分成上、下两部分

的体积比为

A.

B.

C.

D.

8.设y=f(x)是定义在实数集上的函数,则函数y=f(x-2)与函数y=f(4-x)的图象关于

A.直线x=0对称

B.直线x=1对称

C.直线x=2对称

D.直线x=3对称

9.在直线x-y=0和y=0上分别有一点M、N使M、N和A(3,1)满足|AM| + |MN| + |NA|有最小值时的点M、N的坐标分别是

A.( )

B.

C.(1,3),(2,0)

D.

10.若函数f(x)= 的定义域是实数集R,则实数a的取值范围是

A.R

B.

C.

D.

11.n∈N,二项式(a+b)2n的展开式各项系数中的最大系数一定是

A.奇数

B.偶数

C.不一定是整数

D.是整数,但是奇数还是偶数与n的取值有关

(二)填空题(把答案填在题中横线上)。

12.

13.已知(2x2+4x+3)6=a0+a1(x+1)2+a2(x+1)4+…+a0(x+1)12则a0+a2+a4+a6的值为 。

14.若函数f(x)=(x+a)3,对任意的t∈R,总有f(1+t)=-f(1-t)则f(2)+f(-2)的值为 。

15.如图, 已知矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC边上,只有一个点Q,且PQ⊥DQ,则

a= .

(三)解答题(解答应写出文字说明,证明过程或演算步骤)。

16.在△ABC中,BC=a,AC=b,AB=C,且边长C最大,又知accosA+bccosB<4s(s为ABC的面积)求证:△ABC为锐角三角形。

17.若△ABC的三个内角A、B、C成等差数列,求证: 。

18.解关于x的不等式

19.已知α∈R,关于x的不等式(1+sinα+cosα)x2-(1+2sinα)x+sinα>0当x∈[0,1]时恒成立,求α的取值范围。

20.求证:函数 的图象是平面内与两定点距离之差的绝对值是常数的点的轨迹。

21.以点A为圆心,以2cosθ(0<θ< )为半径的圆内有一点B,已知|AB|=2sinθ,设过点B且与圆A内切于点T的圆的圆心为M。

(1)当θ取某个值时,说明点M的轨迹P是什么曲线?

(2)点M是轨迹P上的动点,点N是QA上的上的动点,把|MN|的最大值记为f(θ),(不要求写出证明)求f(θ)的取值范围。

参考答案

1—5 B D B A A 6—11 C D D B D B

12、

13、

14、答案:-26

说明:由已知,f(1+t)+f(1-t)=0 (1+t+a)3+(1-t+a)3=0

∴1+a=0,a=-1, ∴f(x)=(x-1)3,则f(2)+f(-2)=-26。

15、

16、

17、

18、

19、

20、

21、

类比与化归思想方法

一、内容提要

在长期的数学实践中人们已经建立了很多概念,很多题式模型,掌握了很多固定的常规通法(解一次、二次方程及不等式,求一些基本初等函数的值域,求圆锥曲线方程等)。而我们面对客观问题,有时要用联想类比的方法,将新的问题化归或注入到某种数学模型中去,然后用常规常法加以解决。以上所述就是数比与化归的思想方法,它也是数学中一种常见的思维策略。比如:计算多面体的体积时往往把它分割几个棱锥、棱柱或棱台,分而求之;解一个较为复杂的不等式,就往往归结到一元一次、一元二次不等式解之。对某个未知的数列求和,可以剖析通项公式,再分别利用等差(比)数列求和公式或裂项法得之。运用类比化归时,却是有意观察、摸清,无意"柳暗花明"(化归成功)。为"化归"而化归是不好的,本卷旨在这方面对考生进行训练考查。

二、例题分析

[例1]把下列命题写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题:

(1)当x=2时,x2-3x+2=0;

(2)对顶角相等;

(3)末位数是0的整数,可以被5整除。

思路分析:

按四种命题的定义来写。

解答:(1)原命题:若x=2,则x2-3x+2=0。

逆命题:若x2-3x+2=0,则x=2.

否命题:若x≠2,则x2-3x+2≠0。

逆否命题:若x2-3x+2≠0,则x≠2。

(2)原命题:若两个角是对顶角,则它们相等。

逆命题:若两个角相等,则它们是对顶角。

否命题:若两个角不是对顶角,则它们不相等。

逆否命题:若两个角不相等,则它们不是对顶角。

(3)原命题:若一个整数末位数是0,则这个整数可以被5整除。

逆命题:若一个整数可以被5整除,则这个整数末位数是0。

否命题:若一个整数末位数不是0,则这个整数不能被5整除。

逆否命题:若一个整数不能被5整除,则这个整数末位数不是0。

[例2]求证:在一个三角形内不可能有两个角是直角。

思路分析:

本题用直接法证明困难,故可考虑用反证法进行论证。

证明:假设有可能有两个角都是直角,不妨设A=90°,B=90°,则A+B+C=90°+90°+C>180°,这与A+B+C=

180°矛盾,∴假设错误,故三角形内不可能有两个角是直角。

[例3]总结一下初中学过的不等式的基本性质。

答案: 不等式的基本性质:

说明:

1、上面每条性质后面用括号注明性质的名称,其用意是帮助你加深理解和记忆。这些性质到了高中

二年级还要系统学习,如果在高一你就熟练地掌握了不等式的基本性质,那么你的整个数学学习将

少犯错误.

2、上面使用了现代语言符号" "、" ",后面将在"充要条件"一节中学习它,现在" "译成"推出",

而"A B"表示"A B,且B A",即" "译成"等价"较早地熟练使用这些符号,将推进你的数学学习。

三、检测题

1.已知集合A={1,2,3,4,5} B={6,7,8},f:A→B,则满足条件f(1)≥f(2)≥f(3)≥f(4)≥f(5)的映射的个数为
A.3 B.6 C.12 D.21

2.若四面体的六条棱中,共有五条棱长为a,则该四面体的体积的最大值为
A. B. C. D.

3.已知0≤x≤ ,则函数f(x)=3sin 的最小值与最大值分别为
A. B.3, C.,3 D.,

4.设复数Z=2+ai(a∈R), 那么|Z+1-i|+|Z-1+i|的最小值是
A. B. C.4 D.

5.已知数列{an}满足:Sn= ,那么的值为
A.-1 B.1 C.-2 D.2

6.当x∈[0,π]时,y=|sinx|+|cosx|的递增区间是
A.[0,] B.[] C. D.

7.已知是实数,则复数Z对应的点集可能是
A.x轴 B.y轴 C.x轴或y轴 D.以原点为圆心,为半径的圆

8.设函数f(x)=x4-4x3+6x2-4x+1 (x≤1),则f(x)的反函数f-1(x)为
A. B. C. D.

9.已知 ,那么y=2sinx+2cosx+2sin2x-1的最大值是
A.+1 B.-1 C. D.

10.已知a、b∈R+,则下列各式中成立的是
A.cos2θlga+sin2θlgb>lg(a+b)

B.cos2θlga+sin2θlgb<lg(a+b)

C.

D.

11.θ∈(0,2π), 的最小值是
A.2 B. C.4 D.

12. 如图,多面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,A1A、B1B、C1C、D1D都垂直于底面ABCD,且B1=1,C1=A1A=2,D1D=3则多面体体积为

A. B. C.2 D.4

13.定义在R上的函数f(x)是奇函数,又是以2为周期的周期函数,那么f(2001)= 。

14.已知点P在椭圆上,若P到其右准线的距离恰好是到椭圆的两个焦点的距离的等差中项,则点P的横坐标为 。

15.x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范围是 。

16.若 的展开式中,含x的项为第6项,设(1-x+2x2)n=a0+a1x+a2x2+…+a2nx2n,则a1+a2+…+a2n= 。

17.

18.以椭圆(a>1)短轴的一个端点B(0,1)为直角顶点,作椭圆的内接等腰直角△ABC,这样的三角形存在吗?若存在,最多能作几个?

19.

20.关于x的方程3x2-(6m-1)x+m2+1=0的两根为α、β,且|α|+|β|=2,求实数m的值。

21.设a>0,a≠1,函数f(x)=loga.

(1)讨论f(x)的单调性,并给予证明。

(2)设g(x)=1+loga(x-3),如果方程f(x)=g(x)有两个不等实根,求a的取值范围。

22.

答案:

1、D

2、A

3、A

4、B

5、D

6、C

7、D

8、B

9、A

10、B

11、C

12、C

13、0

14、x0=

15、用图象法解。1<a≤2。

16、255

17、

18、

19、

20、

21、

22、解:(1)已知f(1)=3,f(-1)=-f(1)=-3,f(2)<4,a、b、c∈Z,
得条件组
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
巴施Ob
推荐于2018-05-06 · TA获得超过1811个赞
知道小有建树答主
回答量:244
采纳率:0%
帮助的人:274万
展开全部
1按专题形式做历年本省市高考真题(例如圆锥曲线题放到一起做)
2总结大题题型与对应解题思路(特别适应于圆锥曲线、求导、三角函)
3个人认为不用错题集,毕竟题不会重样,重要的是记住常规解题思路
4巩固基础提炼,解题基本思路巩固后再进行提高
5保持信心与乐观态度,坚持
文科数学内容少、题目较简单、提分到120、130会很快,要相信自己
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式