arccotx的积分是多少
展开全部
分部积分法:
∫arctanxdx=xarctanx-∫xdarctanx=xarctanx-∫x/(1+x²)dx=xarctanx-1/2ln(1+x²)+C
解:
∫daoarctanxdx
=xarctanx-∫xdarctanx
=xarctanx-∫x/(1+x²)dx
=xarctanx-1/2ln(1+x²)+C
所以arctanx的积分是xarctanx-1/2ln(1+x²)+C。
扩展资料:
分部积分法是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
参考资料来源:百度百科-分部积分法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询