泛函分析中:柯西点列一定是收敛点列的证明

 我来答
帐号已注销
2019-12-29
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

这是完备空间的定义。如果在不完备的空间里,当然可以有柯西列不收敛,距离空间中任意收敛点列都是柯西列,但柯西列不一定收敛。

设{x_n}是Cauchy点列。则满足任取e > 0,存在N,使得m, n >= N时,有x_m和x_n距离小于e。

取e = 1,设m, n >= N0时,x_m和x_n距离小于1。此时取m = N0,则x_N0和x_n的距离小于1。说明N0之后的点都在以x_N0为球心,半径为1的球之内。

而N0之前只有有限个点x_1, ..., x_{N0-1}。取M = max{x_N0到x_i的距离,i < N0},再取M1 = max{M, 1},于是X_N0到x_n(n是自然数)的距离都不超过M1,当然说明这个点列是有界的。

扩展资料:

设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有

(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;

(Ⅱ)(对称性)d(x,y)=d(y,x);

(Ⅲ)(三角不等式)d(x,z)≤d(x,y)+d(y,z)

则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。

参考资料来源:百度百科-度量空间

结老不0k
2015-07-24
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
这是完备空间的定义。如果在不完备的空间里,当然可以有柯西列不收敛。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
惠企百科
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

这是完备空间的定义。如果在不完备的空间里,当然可以有柯西列不收敛,距离空间中任意收敛点列都是柯西列,但柯西列不一定收敛。

设{x_n}是Cauchy点列。则满足任取e > 0,存在N,使得m, n >= N时,有x_m和x_n距离小于e。

取e = 1,设m, n >= N0时,x_m和x_n距离小于1。此时取m = N0,则x_N0和x_n的距离小于1。说明N0之后的点都在以x_N0为球心,半径为1的球之内。

而N0之前只有有限个点x_1, ..., x_{N0-1}。取M = max{x_N0到x_i的距离,i < N0},再取M1 = max{M, 1},于是X_N0到x_n(n是自然数)的距离都不超过M1,当然说明这个点列是有界的。

扩展资料:

设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有

(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;

(Ⅱ)(对称性)d(x,y)=d(y,x);

(Ⅲ)(三角不等式)d(x,z)≤d(x,y)+d(y,z)

则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。

参考资料来源:百度百科-度量空间

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式