求∫根号1-4x²dx的不定积分
1个回答
展开全部
设 2x = sint,则 2dx = cost*dt
原积分公式:
=∫√[1 - (sint)^2] * (1/2)*cost * dt
=∫1/2 * (cost)^2 * dt
=1/4 * ∫2(cost)^2 * dt
=1/4 * ∫[1 + cos(2t)] * dt
=1/4*∫dt + 1/4*∫cos(2t)*dt
=t/4 + 1/8*∫cos(2t)*d(2t)
=t/4 + 1/8 * sin(2t) + C
原积分公式:
=∫√[1 - (sint)^2] * (1/2)*cost * dt
=∫1/2 * (cost)^2 * dt
=1/4 * ∫2(cost)^2 * dt
=1/4 * ∫[1 + cos(2t)] * dt
=1/4*∫dt + 1/4*∫cos(2t)*dt
=t/4 + 1/8*∫cos(2t)*d(2t)
=t/4 + 1/8 * sin(2t) + C
追问
答案是1/4arcsin2x+x/2根号1-4x²+C
追答
忘记把 x 代回去了!
t = arcsin(2x),sin(2t) = 2sint*cost = 2*(2x)*√[1-(2x)^2] = 4x * √(1-4x^2)
所以,原积分:
= (1/4) * arcsin(2x) + (1/2)*x *√(1 - 4x^2) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询