已知Sn为数列an的前n项和,且2an=Sn+n
展开全部
(1)Sn=2an-n
S[n-1]=Sn-an=an-n=2a[n-1]-(n-1)
an=2a[n-1]+1
bn=an+1=2a[n-1]+2
b[n-1]=a[n-1]+1
bn2b[n-1]所以是等比数列
(2)Sn=2an-n
Tn=S1+.....Sn=(2a1-1)+(2a2-2)+...(2an-n)=2(a1+...an)-(1+2+....n)
=2Sn-n(n+1)/2 =2(2an-n)-n(n+1)/2=4an-2n-n(n+1)/2
S[n-1]=Sn-an=an-n=2a[n-1]-(n-1)
an=2a[n-1]+1
bn=an+1=2a[n-1]+2
b[n-1]=a[n-1]+1
bn2b[n-1]所以是等比数列
(2)Sn=2an-n
Tn=S1+.....Sn=(2a1-1)+(2a2-2)+...(2an-n)=2(a1+...an)-(1+2+....n)
=2Sn-n(n+1)/2 =2(2an-n)-n(n+1)/2=4an-2n-n(n+1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询