大一高数,定积分问题。设f(x)一阶可微,y=∫[0,x^2]xf(t)dt,求d^2y/dx^2 20
2个回答
展开全部
y = ∫[0,x^2]xf(t)dt
= x∫[0,x²]f(t)dt,
求导,得
dy/dx = ∫[0,x²]f(t)dt+xf(x²)(2x)
= ∫[0,x²]f(t)dt+2x²f(x²),
d²y/dx² = (d/dx)(dy/dx)
=(d/dx){∫[0,x²]f(t)dt+2x²f(x²)}
= 2xf(x²)+4xf(x²)+2x²f'(x²)(2x)
= 6xf(x²)+4x³f'(x²)。
= x∫[0,x²]f(t)dt,
求导,得
dy/dx = ∫[0,x²]f(t)dt+xf(x²)(2x)
= ∫[0,x²]f(t)dt+2x²f(x²),
d²y/dx² = (d/dx)(dy/dx)
=(d/dx){∫[0,x²]f(t)dt+2x²f(x²)}
= 2xf(x²)+4xf(x²)+2x²f'(x²)(2x)
= 6xf(x²)+4x³f'(x²)。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询