如何求参数方程所确定的函数的二阶导数
推荐于2020-02-22
展开全部
举例说明x=t-ln(1+t^2) y=arctan(t) 求二阶导数解:求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,因变量由y换作dy/dx,自变量还是x,所以
y对x的二阶导数 = dy/dx对t的导数 ÷ x对t的导数 dy/dt=1/(1+t^2) dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2) 所以,dy/dx=1/(1+t^2-2t) d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2 所以,
d2y/dx2=d(dy/dx)/dt ÷ dx/dt
=-(2t-2)/(1+t^2-2t))^2 ÷ (1+t^2-2t)/(1+t^2) =(2-2t)(1+t^2)/(1+t^2-2t)^3
y对x的二阶导数 = dy/dx对t的导数 ÷ x对t的导数 dy/dt=1/(1+t^2) dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2) 所以,dy/dx=1/(1+t^2-2t) d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2 所以,
d2y/dx2=d(dy/dx)/dt ÷ dx/dt
=-(2t-2)/(1+t^2-2t))^2 ÷ (1+t^2-2t)/(1+t^2) =(2-2t)(1+t^2)/(1+t^2-2t)^3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询