行列式按行展开定理是怎么回事
行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。
如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。
比如:行列式
D=|a11 a12 a13 a14|
|a21 a22 a23 a24|
|a31 a32 a33 a34|
|a41 a42 a43 a44|
a23处在二行三列,从原行列式中划去它所在的行和列各元素,剩下的元素按原位排列构成的新行列式,称为它的余子式。(是一个比原来行列式低一阶的行列式)
扩展资料:
由三阶行列式的展开式(12-4) 及代数余子式,将三阶行列式D可表示为D= a21A21 + a22A22 + a23A23,此式称为行列式按第二行的展开式。同样,行列式也可按其他行或列展开,于是每个行列式可以表成它的某一行(或某一列)的每个元素与它对应元素的代数余子式乘积的和,即
D= ai1Ai1+ ai2Ai2 + ai3Ai3 ( i=1,2,3 ), (1)
D= a1jA1j+ a2jA2j + a3jA3j( j=1,2,3 ), (1')
把类似(1)式的展开称为行列式的依行展开式,把(1')式称为行列式的依列展开式。
参考资料来源:百度百科-行列式依行展开
行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值.
例如:D=a11·A11+a12·A12+a13·A13+a14·A14
Aij是aij对应的代数余子式
Aij=(-1)^(i+j)·Mij
Mij是aij对应的余子式。
(-1)^1+1=1
代数余子式前有(-1)的幂指数。
a11(-1)^(1十1)=1
所以A11=(-1)^(1+1)·M11=M11
A14=(-1)^(1+4)·M14