有限循环小数和有限不循环小数是有理数还是无理数

 我来答
教育小百科达人
2019-01-10 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:462万
展开全部

循环小数没有有限的说法,只要说循环小数都是无限的。所有有限小数都是有理数;无限小数中,无限循环小数是有理数,无限不循环小数是无理数。

小数分有限小数和无限小数。无限小数分为无限循环小数和无限不循环小数。有限小数即使出现循环,也不能叫有限循环小数。也就是说,循环小数一定是无限小数。

循环小数是指从小数点后某一位开始有限地重复出现前一个或一节数码的十进制无限小数。无限循环小数都可以转化为分母为  的分数,因此无限循环小数属于有理数。无限不循环小数属于无理数。

扩展资料:

常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

地在闯04
2020-11-21
知道答主
回答量:11
采纳率:0%
帮助的人:5804
展开全部
循环小数没有有限的说法,只要说循环小数都是无限的。所有有限小数都是有理数;无限小数中,无限循环小数是有理数,无限不循环小数是无理数。

小数分有限小数和无限小数。无限小数分为无限循环小数和无限不循环小数。有限小数即使出现循环,也不能叫有限循环小数。也就是说,循环小数一定是无限小数。

循环小数是指从小数点后某一位开始有限地重复出现前一个或一节数码的十进制无限小数。无限循环小数都可以转化为分母为

的分数,因此无限循环小数属于有理数。无限不循环小数属于无理数。



扩展资料:

常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yzwb我爱我家

2016-03-05 · 知道合伙人教育行家
yzwb我爱我家
知道合伙人教育行家
采纳数:64746 获赞数:753499
从1998年任教小学数学至今,并担任班主任工作10余年。

向TA提问 私信TA
展开全部
循环小数没有有限的说法,只要说循环小数都是无限的。
所有有限小数都是有理数;
无限小数中,无限循环小数是有理数,无限不循环小数是无理数。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
把手机丢了2g
2022-11-06
知道答主
回答量:1
采纳率:0%
帮助的人:292
展开全部
有限循环小数和有限不循环小数是有理数,因为它们可以化成分数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
EQWEQ23423
2018-05-13 · TA获得超过3121个赞
知道小有建树答主
回答量:850
采纳率:85%
帮助的人:36万
展开全部
有理数。
你所谓的有限循环小数是指0.123123123……123那类,有限不循环小数是指0.7546465……3那类的是不是。当然,这两种都是有理数。因为都是有限小数。只要是有限什么小数就都是有理数。无限不循环小数才是无理数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式