高一函数
已知函数f(x)对任意实数a,b均有f(a)+f(b)=f(a+b),且当x>0时,f(x)<0,f(1)=-三分之二。1判断并证明在f(x)R上的单调性。2求f(x)在...
已知函数f(x)对任意实数a,b均有f(a)+f(b)=f(a+b),且当x>0时,f(x)<0,f(1)=-三分之二。
1判断并证明在f(x)R上的单调性。2求f(x)在【-3,3】上的最大值与最小值
已知函数f(x)对任意实数a,b均有f(a)×f(b)=f(a×b),定义域为R,且f(27)=3,写出一个满足条件的函数 展开
1判断并证明在f(x)R上的单调性。2求f(x)在【-3,3】上的最大值与最小值
已知函数f(x)对任意实数a,b均有f(a)×f(b)=f(a×b),定义域为R,且f(27)=3,写出一个满足条件的函数 展开
1个回答
展开全部
(1)
for y> x
y= x+ c ( c > 0)
f(y) = f(x+c)
= f(c) + f(x)
< f(x)
f is decreasing on R
(2)
put
a = b =0
f(0) + f(0) = f(0)
=> f(0) =0
put a = b =1
f(1) + f(1) = f(2)
=> f(2) = -4/3
put a=1 , b =2
f(1) + f(2) = f(3)
=> f(3) = -2
put a= -1, b=1
f(0) = f(1) + f(-1)
0 = -2/3 + f(-1)
=> f(-1) = 2/3
put a = b =-1
=> f(-2) = 4/3
put a=-2, b=-1
=> f(-3) = 2
f(x)在【-3,3】上
最大值 = f(-3) =2
最小值 = f(3) = -2
(3)
f(x) = log(3) x ( log with base 3 )
for y> x
y= x+ c ( c > 0)
f(y) = f(x+c)
= f(c) + f(x)
< f(x)
f is decreasing on R
(2)
put
a = b =0
f(0) + f(0) = f(0)
=> f(0) =0
put a = b =1
f(1) + f(1) = f(2)
=> f(2) = -4/3
put a=1 , b =2
f(1) + f(2) = f(3)
=> f(3) = -2
put a= -1, b=1
f(0) = f(1) + f(-1)
0 = -2/3 + f(-1)
=> f(-1) = 2/3
put a = b =-1
=> f(-2) = 4/3
put a=-2, b=-1
=> f(-3) = 2
f(x)在【-3,3】上
最大值 = f(-3) =2
最小值 = f(3) = -2
(3)
f(x) = log(3) x ( log with base 3 )
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询