帕斯卡定理的定理定义

 我来答
ゆ追梦丶濙
2016-05-18
知道答主
回答量:87
采纳率:100%
帮助的人:8.7万
展开全部

如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上。
证明
设ABCDEF是圆锥曲线刃的内接六边形,对边AB和DE交于X,对边BC和EF交于y,对边CD和AF交于z,则x、y、z在一条直线上。
第一步:利用射影变换,可以将命题从关于圆锥曲线力变为关于圆0的命题。
第二步:过圆0的圆心作圆所在平面的垂线,在垂线上取一点S,以S为顶点,圆D为底面作圆锥。注意到SXY确定一个平面,用与平面SXY平行的平面截圆锥,则构造成功一个以S为透射中心的中心射影,这个中心射影将圆O变为椭圆多,将直线XY变为无穷远直线。于是,命题转化为:设ABCDEF是椭圆的内接六边形,对边AB平行DE,对边BC平行EF,则CD平行AF。
第三步:利用透视中心为无穷远点的中心射影(仿射变换)将椭圆变为圆,而透视中心为无穷远点时,中心射影保持平行性,即证。 本定理可推广为:圆锥曲线内接六边形的三双对边(所在直线)的交点共线。
证明
引理1:两圆交于A、B,分别过A、B的直线交两圆于C、D,E、F,则CE//DF.

画图即证。
引理2:两三角形的对应边都平行,则对应点的连线共点。
证法1.利用相似三角形,采用同一法证明。
证法2.直接应用笛沙格定理。
正式证明:
考察下图即得。
评注:
帕斯卡定理的证法有很多。
还有,反演,射影变换,射影对应等证法。
此法是十分别致,而且十分的初等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式