高数三重积分,这里的对称性是指什么?
展开全部
当空间区域Ω关于坐标面(如:空间区域Ω关于yoz 坐标面)对称,被积函数关于另一个字母(如:被积函数关于z为奇函数)为奇函数,则三重积分为0。
积分区域关于坐标面对称,被积函数是关于x,y,z的奇偶函数,这是一种,还有一种是对自变量的对称性,当自变量x,y,z任意交换顺序后,积分区域不变,则交换顺序后的积分值也不变,这个也叫轮换对称性。
其实有的时候要看具体的题目,有些表面上看好像不具备对称性,但是通过平移或变量代换后就可以利用对称性的。
直角坐标系法
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
②函数条件:f(x,y)仅为一个变量的函数。
2016-05-19
展开全部
当空间区域Ω关于坐标面(如:空间区域Ω关于yoz 坐标面)对称,被积函数关于另一个字母(如:被积函数关于z为奇函数)为奇函数,则三重积分为0。
类似,还有两种情况。
以这个题为例,第一个空间区域Ω关于yoz坐标面对称,第二个条件是被积函数xz是关于x的奇函数,所以三重积分∫∫∫xzdv=0;
空间区域Ω关于xoz坐标面对称,被积函数xy是关于y的奇函数,所以三重积分∫∫∫xydv=0;
空间区域Ω关于xoz坐标面对称,被积函数yz是关于y的奇函数,所以三重积分∫∫∫yzdv=0;
所以,三重积分2∫∫∫(xy+yz+xz)dv=0
类似,还有两种情况。
以这个题为例,第一个空间区域Ω关于yoz坐标面对称,第二个条件是被积函数xz是关于x的奇函数,所以三重积分∫∫∫xzdv=0;
空间区域Ω关于xoz坐标面对称,被积函数xy是关于y的奇函数,所以三重积分∫∫∫xydv=0;
空间区域Ω关于xoz坐标面对称,被积函数yz是关于y的奇函数,所以三重积分∫∫∫yzdv=0;
所以,三重积分2∫∫∫(xy+yz+xz)dv=0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询