微分和积分有什么区别,大一高数,最简单的解释

 我来答
教育小百科达人
推荐于2019-10-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:471万
展开全部

导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分是求原函数,可以形象理解为是函数导数的逆运算。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx,而其导数则为:y'=f'(x)。

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。

扩展资料:

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)

那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。

但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。勒贝格积分就是这样的一种积分。

黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。

勒贝格积分的概念定义在测度的概念上。测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。黎曼积分实际可以看成是用一系列矩形来尽可能铺满函数曲线下方的图形,而每个矩形的面积是长乘宽,或者说是两个区间之长度的乘积。

测度为更一般的空间中的集合定义了类似长度的概念,从而能够“测量”更不规则的函数曲线下方图形的面积,从而定义积分。在一维实空间中,一个区间A= [a,b] 的勒贝格测度μ(A)是区间的右端值减去左端值,b−a。这使得勒贝格积分和正常意义上的黎曼积分相兼容。

在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。

参考资料:百度百科-微分 百度百科-积分

百度网友093d915
高粉答主

2021-06-13 · 说的都是干货,快来关注
知道小有建树答主
回答量:1041
采纳率:100%
帮助的人:48.1万
展开全部

1、历史发展不同:

微分的历史比积分悠久。希腊时期,人类讨论「无穷」、「极限」以及「无穷分割」等概念是微分的来源基础。而积分是由德国数学家波恩哈德·黎曼于19世纪提出的概念。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。

2、数学表达不同:

微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。

积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。


微积分的基本公式共有四大公式:

1、牛顿-莱布尼茨公式,又称为微积分基本公式;

2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分;

3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分;

4、斯托克斯公式,与旋度有关。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友0082fd8
推荐于2017-11-23 · TA获得超过1804个赞
知道小有建树答主
回答量:819
采纳率:70%
帮助的人:67.7万
展开全部
简单的理解,导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分是求原函数,可以形象理解为是函数导数的逆运算。
  通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx,而其导数则为:y'=f'(x)。
  设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自凌云山得体的曹仁
高粉答主

2019-12-21 · 每个回答都超有意思的
知道大有可为答主
回答量:5.9万
采纳率:70%
帮助的人:4523万
展开全部
1、历史发展不同:

微分的历史比积分悠久。希腊时期,人类讨论「无穷」、「极限」以及「无穷分割」等概念是微分的来源基础。而积分是由德国数学家波恩哈德·黎曼于19世纪提出的概念。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。

2、数学表达不同:

微分:导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。

积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f'(x)=g(x),则有∫g(x)dx=f(x)+c。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2021-01-19
展开全部
微分可理解为函数求导,但表达形式不一样,其中求导为:y'=f'(x),而微分为:dy= f'(x)dx;
积分就是求原函数,例如F'(x) = f(x),那么∫f(x)dx = F(x)+C,其中C为任意常数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式