过抛物线y²=2ax(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与QF的长分别是m,n,则1/m+1/n=

fnxnmn
2010-12-12 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6706万
展开全部
1/p+1/q=2/a(可用特殊直线x=a/2 计算,此时p=a,q=a)。

不妨设p>q,抛物线准线方程L:x=-a/2,做PE⊥L于E,QH⊥L于H,L交轴于F',直线PQ交L于G,FF'=a,则
PE=PF=p
QH=QF=q
GP/PE=GQ/QH,即
GP/p=(GP+p+q)/q
GP=p(p+q)/(q-p)
GP/PE=GF/FF',即
[p(p+q)/(q-p)]/p=(p(p+q)/(q-p)]+p)/ a
(p+q)/(q-p)=1/a(p^2+pq+pq-p^2)/(q-p)
(p+q)/pq=2/a
1/p+1/q=2/a
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式