问一道高二圆锥曲线题

AB为椭圆x2/36+y2/20=1长轴的左右端点,F为右焦点,P在椭圆上,位于x轴上方,PA⊥PF。1求P的坐标2M为AB上一点,M到直线AP的距离等于MB的绝对值,求... A B为椭圆x2/36+y2/20=1长轴的左右端点,F为右焦点,P在椭圆上,位于x轴上方,PA⊥PF。
1 求P的坐标
2 M为AB上一点,M到直线AP的距离等于MB的绝对值,求椭圆上的点到点M的距离d的最小值
展开
koi4646633
2010-12-12 · TA获得超过469个赞
知道小有建树答主
回答量:88
采纳率:0%
帮助的人:175万
展开全部
首先可由椭圆方程得到a=6,b=2√5,从而c=4,c/a=2/3,右准线x=a^2/c=9
(1)设P坐标为(x,y),则P到右准线距离为 9-x ,P到F距离为2(9-x)/3
过P作垂线交AB于Q,则QF=6-x,又AF=6+4=10
根据三角形PQF与APF相似,有QF/PF=PF/AF
解得x=3/2,带回椭圆方程,y=(5√3)/2,
即P坐标为(3/2,(5√3)/2)
(2)设M坐标为(x',0),M到AP的距离l=MB
在直角三角形APF中有l/PF=AM/AF,由上一问结果知PF=5,AF=10,又AM=x'+6,有l/5=(x'+6)/10,且l=MB=6-x’,联立解得x‘=2
若设椭圆上某点坐标为(x,y),则距离d=√((x-2)^2+y^2)
可化简为求d^2=(x-2)^2+y^2的最小值
由椭圆方程得y^2=20(1-x^2/36)
带入得d^2=(x-2)^2+20(1-x^2/36)
化简得9d^2=4(x-9/2)^2+135
故当x=9/2时,d^2有最小值15,即d最小值为√15
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式