分析:(1)由菱形的性质得出BC=DC,∠BCD=120°,由旋转的性质得PC=QC,∠PCQ=120°,得出∠BCP=∠DCQ,由SAS得出△BCP≌△DCQ即可
(2)①由全等三角形的性质得出BP=DQ,得出∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,则∠QEN=∠QNE,得出∠QED=∠QNC=∠PMB,证明△PBM≌△QDE (AAS),即可得出结论;
②由①知PM=QN,得出MN=PQ=
√3
PC,当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,菱形ABCD的面积=2△ABC的面积,即可得出答案.