求解一道积分应用题
展开全部
解;见下图,闸板等腰梯形ABCO,等价于直角梯形MNCO,
CN的直线方程为:(10-6)/8=(x-6)/y, x=y/2+6;
对于y点的压力:水柱高度为:(6-y), 水的密度=1,水的压强为 1000g(6-y)(N/m^2)(其中g=9.8m/s^2为重力加速度); 液体中的压强可以大小不变的向各个方向传递,所以,在圆处xdy所受的压力为:df=1000g*(6-y)*x*dy=10^3g(6-y)(y/2+6)dy=-9.8*10^3(3y^2+3y-36)dy;因为压力增大的方向为y的反方向,所以积分区间为:(6,0);
F=-*9.8*10^3∫(6,0) (3y^2+3y-36)dy=*9.8*10^3[y^3+3y^2/2-36y](0,6)
=9.8*10^3*[(6^3+3*6^2/2-6*36)-0]=9.8*10^3*3*18=5.292*10^5(N)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询