1个回答
展开全部
答:
1.
换元,令√x=t,则x=t^2,dx=2tdt。
不定积分∫√x+1/√x dx
=∫(t+1/t)2tdt
=∫2t^2+2 dt
=2t^3/3+2t + C
=2x^(3/2)/3+2√x + C
=2√x(x/3+1) + C
所以原定积分∫(2到3) √x+1/√x dx
=2√x(x/3+1) |(2到3)
=4√3-10√2/3
2.
不定积分∫(3x^4+3x^2+1)/(x^2+1) dx
=∫3x^2+1/(x^2+1) dx
=x^3+arctanx + C
所以原不定积分∫(-1到0)(3x^4+3x^2+1)/(x^2+1) dx
=x^3+arctanx |(-1到0)
=0-(-1+arctan(-1))
=1+π/4
3.
不定积分∫ cos2x/(cosx+sinx) dx
=∫ [(cosx)^2-(sinx)^2]/(cosx+sinx) dx
=∫ (cosx+sinx)(cosx-sinx)/(cosx+sinx) dx
=∫ cosx-sinx dx
=sinx+cosx + C
所以原不定积分∫(0到π/2) cos2x/(cosx+sinx) dx
=sinx+cosx |(0到π/2)
=1-1
=0
4.
不定积分∫1/[(sinx)^2(cosx)^2] dx
=∫[(sinx)^2+(cosx)^2]/[(sinx)^2(cosx)^2] dx
=∫1/(sinx)^2+1/(cosx)^2 dx
=tanx-cotx + C
所以原定积分∫(π/6到π/3) 1/[(sinx)^2(cosx)^2] dx
=tanx-cotx |(π/6到π/3)
=tan(π/3)-cot(π/3)-(tan(π/6)-cot(π/6))
=√3-1/√3-(1/√3-√3)
=4√3/3
1.
S=∫(1到2)3t^2 dt
=t^3|(1到2)
=8-1
=7
所以走过了7m。
2.
(1).C(x)=∫3/(2√x) dx
=3√x + C
因为C(0)=70,所以C=70
即C(x)=3√x+70,(x>0)
(2).当x=196时,C(x)=112;当x=100时,C(x)=100
△C(x)=112-100=12
所以收入由100增加到196时,消费支出从100增到112,增量为12.
1.
换元,令√x=t,则x=t^2,dx=2tdt。
不定积分∫√x+1/√x dx
=∫(t+1/t)2tdt
=∫2t^2+2 dt
=2t^3/3+2t + C
=2x^(3/2)/3+2√x + C
=2√x(x/3+1) + C
所以原定积分∫(2到3) √x+1/√x dx
=2√x(x/3+1) |(2到3)
=4√3-10√2/3
2.
不定积分∫(3x^4+3x^2+1)/(x^2+1) dx
=∫3x^2+1/(x^2+1) dx
=x^3+arctanx + C
所以原不定积分∫(-1到0)(3x^4+3x^2+1)/(x^2+1) dx
=x^3+arctanx |(-1到0)
=0-(-1+arctan(-1))
=1+π/4
3.
不定积分∫ cos2x/(cosx+sinx) dx
=∫ [(cosx)^2-(sinx)^2]/(cosx+sinx) dx
=∫ (cosx+sinx)(cosx-sinx)/(cosx+sinx) dx
=∫ cosx-sinx dx
=sinx+cosx + C
所以原不定积分∫(0到π/2) cos2x/(cosx+sinx) dx
=sinx+cosx |(0到π/2)
=1-1
=0
4.
不定积分∫1/[(sinx)^2(cosx)^2] dx
=∫[(sinx)^2+(cosx)^2]/[(sinx)^2(cosx)^2] dx
=∫1/(sinx)^2+1/(cosx)^2 dx
=tanx-cotx + C
所以原定积分∫(π/6到π/3) 1/[(sinx)^2(cosx)^2] dx
=tanx-cotx |(π/6到π/3)
=tan(π/3)-cot(π/3)-(tan(π/6)-cot(π/6))
=√3-1/√3-(1/√3-√3)
=4√3/3
1.
S=∫(1到2)3t^2 dt
=t^3|(1到2)
=8-1
=7
所以走过了7m。
2.
(1).C(x)=∫3/(2√x) dx
=3√x + C
因为C(0)=70,所以C=70
即C(x)=3√x+70,(x>0)
(2).当x=196时,C(x)=112;当x=100时,C(x)=100
△C(x)=112-100=12
所以收入由100增加到196时,消费支出从100增到112,增量为12.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询