已知y=f(x)=xlnx.
已知y=f(x)=xlnx.(1)求函数y=f(x)的图像在x=e处的切线方程;(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值。(3)证明对一切...
已知y=f(x)=xlnx.
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值。
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立。
给过程 展开
(1)求函数y=f(x)的图像在x=e处的切线方程;
(2)设实数a>0,求函数F(x)=f(x)/a在[a,2a]上的最大值。
(3)证明对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立。
给过程 展开
4个回答
展开全部
1、切线方程 x=e 点 y=f(e)=elne=e
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a<0 0< a<1/(2e)导数小于0 F(x)为减 最大值为ln(a)
x∈(0,+∞),假设 xlnx>x/e^x-2/e ---------》 x(lnx-e^(-x))>-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1<0 即 0<x<1/e g(x) 为减
当lnx+1<0 即 x=1/e g(x) 取最小值 1-e^(-1/e)>0 即>-2/e
xlnx>x/e^x-2/e 成立
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a<0 0< a<1/(2e)导数小于0 F(x)为减 最大值为ln(a)
x∈(0,+∞),假设 xlnx>x/e^x-2/e ---------》 x(lnx-e^(-x))>-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1<0 即 0<x<1/e g(x) 为减
当lnx+1<0 即 x=1/e g(x) 取最小值 1-e^(-1/e)>0 即>-2/e
xlnx>x/e^x-2/e 成立
展开全部
切线方程 x=e 点 y=f(e)=elne=e
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a<0 0< a<1/(2e)导数小于0 F(x)为减 最大值为ln(a)
x∈(0,+∞),假设 xlnx>x/e^x-2/e ---------》 x(lnx-e^(-x))>-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1<0 即 0<x<1/e g(x) 为减
当lnx+1<0 即 x=1/e g(x) 取最小值 1-e^(-1/e)>0 即>-2/e
xlnx>x/e^x-2/e 成立
斜率k=f'(x)=lne+e/e=2 y=f(x)=2(x-e)+e=2x-e
2、F(x)=f(x)/a=xlnx/a 求导 (lnx+1)/a a>0 所以倒数为增函数
x属于[a,2a]
(lna+1)/a (ln2a+1)/a
(lna+1)/a >0 a>1/e 导数大于0 F(x)为增 最大值为2ln(2a)
(ln2a+1)/a<0 0< a<1/(2e)导数小于0 F(x)为减 最大值为ln(a)
x∈(0,+∞),假设 xlnx>x/e^x-2/e ---------》 x(lnx-e^(-x))>-2/e
令 g(x)= x(lnx-e^(-x)) 求导 的 lnx-e^(-x)+1+e^(-x)=lnx+1
当lnx+1>0 即 x>1/e g(x) 为增
当lnx+1<0 即 0<x<1/e g(x) 为减
当lnx+1<0 即 x=1/e g(x) 取最小值 1-e^(-1/e)>0 即>-2/e
xlnx>x/e^x-2/e 成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、求导,得f'(x)=(xlnx)'=lnx+1,所以切线的斜率k=f'(e)=2,切点坐标为(e,e)。
2、F'(x)=(1/a)(lnx+1),由于a>0,所以F'(x)>0在区间[a,2a]上恒成立,也即F(x)在区间上单调递增,从而最大值为F(2a)。
3、应该是变式后构造函数,利用导数,确定新函数的单调性,再证明其最小值>0。。。思路应该是这样的,构造容易处理难,呵呵。应该属于高三综合卷的压轴题类型了。
2、F'(x)=(1/a)(lnx+1),由于a>0,所以F'(x)>0在区间[a,2a]上恒成立,也即F(x)在区间上单调递增,从而最大值为F(2a)。
3、应该是变式后构造函数,利用导数,确定新函数的单调性,再证明其最小值>0。。。思路应该是这样的,构造容易处理难,呵呵。应该属于高三综合卷的压轴题类型了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询