已知AB均为钝角且sinA=根号5/5,sinB=根号10/10,求A+B的值
3个回答
展开全部
cosA = - 2sqr(5)/5
cosB = - 3sqrt(10)/10
sin(A+B) = sinAcosB + cosAsinB = - sqrt(2)/2
cos(A+B)= cosAcosB - sinAsinB = sqrt(2)/2
A+B = 5π/4
cosB = - 3sqrt(10)/10
sin(A+B) = sinAcosB + cosAsinB = - sqrt(2)/2
cos(A+B)= cosAcosB - sinAsinB = sqrt(2)/2
A+B = 5π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinA=√5/5
=>cosA =2√5/5
sinB=√10/10
=>cosB=3√10/10
sin(A+B)
=sinA.cosB+cosA.sinB
=(√5/5)(3√10/10) + (2√5/5)(√10/10)
=√2/2
A+B=3π/4
=>cosA =2√5/5
sinB=√10/10
=>cosB=3√10/10
sin(A+B)
=sinA.cosB+cosA.sinB
=(√5/5)(3√10/10) + (2√5/5)(√10/10)
=√2/2
A+B=3π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询