x=1/(t+1),y=t/(t-1)²。求它的导数dy/dx
1个回答
展开全部
dy/dt
=[(t-1)^2-t*2(t-1)]/(t-1)^4
=(t^2-2t+1-2t^2+2t)/(t-1)^4
=(t^2-2t^2+1)/(t-1)^4
=-(t-1)(t+1)/(t-1)^4
=-(t+1)/(t-1)^3
dx/dt
=-1/(t+1)^2
所以:
dy/dx
=[(t+1)/(t-1)^3]/[1/(t+1)^2]
=(t+1)^3/(t-1)^3.
=[(t+1)/(t-1)]^3.
=[(t-1)^2-t*2(t-1)]/(t-1)^4
=(t^2-2t+1-2t^2+2t)/(t-1)^4
=(t^2-2t^2+1)/(t-1)^4
=-(t-1)(t+1)/(t-1)^4
=-(t+1)/(t-1)^3
dx/dt
=-1/(t+1)^2
所以:
dy/dx
=[(t+1)/(t-1)^3]/[1/(t+1)^2]
=(t+1)^3/(t-1)^3.
=[(t+1)/(t-1)]^3.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询