还有两天期末考试,怎样快速提高初中数学思维,调整心态?
3个回答
2017-06-24
展开全部
有人这样形容数学:“思维的体操,智慧的火花”。在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分,已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。高中数学作为现在高考的重要科目,是高中生必需认真学习的一门学科。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力.然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。同时,现在又正值高中课改的实验阶段,许多高中数学的课程理念又发生了比较大的改变,同学们在学习数学方面就更加的困难了。面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面.一、在学习数学方面存在着心理障碍。具体表现为:1、依赖心理许多同学进入高中后,在数学教学中,还希望像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课。一是期望教师对数学问题进行归纳概括并分门别类地一一讲述,突出重点难点和关键;二是期望教师提供详尽的解题示范,习惯于一步一步地模仿硬套。2.急躁心理由于年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。急功近利,急于求成,表现在数学上常为:盲目下笔,导致解题出错。一是未弄清题意,未认真读题、审题,没弄清哪些是已知条件,哪些是未知条件,哪些是直接条件,哪些是间接条件,需要回答什么问题等;二是未进行条件选择;三是被题设假象蒙蔽,未能采用多层次的抽象、概括、判断和准确的逻辑推理;四是忽视对数学问题解题后的整体思考、回顾和反思。3.定势心理定势心理即人们分析问题、思考问题的思维定势。(1)学生的定势思想,经过升中考后,高一年级的学生有的思想开始松懈,尤其在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,一部分同学,甚至错误的定势为高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。从而对学习的重视、努力程度不够。(2)教法的定势带来了学法的定势。通过对我班的学生座谈了解,同学们普遍反映数学课能听懂但作业不会做。不少学生说,平时自认为学得不错,考试成绩就是上不去。带着问题我曾多次听了初中数学教师的课堂教学,发现初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多。为了提高合格率,不少初中教师把题型分类,将各种题型都一一罗列,让学生死记解题方法和步骤。学生的数学学习依赖于教师为其提供套用的“模子”,尤其在初三,重点题目反复做过多次。4.重结论心理偏重数学结论而忽视数学过程,这是数学教学过程中长期存在的问题。从学生方面来讲,同学间的相互交流也仅是对答案,比分数,很少见同学间有对数学问题过程的深层次讨论和对解题方法的创造性研究,至于思维变式、问题变式更难见有涉及。从教师方面来讲,也存在自觉不自觉地忽视数学问题的解决过程,忽视结论的形成过程,忽视解题方法的探索,对学生的评价也一般只看“结论”评分,很少顾及“数学过程”。从家长方面来讲,更是注重结论和分数,从不过问“过程”。教师、家长的这些做法无疑助长了中学生数学学习的重结论心理。发展下去的结果是,学生对定义、公式、定理、法则的来龙去脉不清楚,知识理解不透彻,不能从本质上认识数学问题,无法形成正确的概念,难以深刻领会结论,致使其智慧得不到启迪,思维的方法和习惯得不到训练和养成,观察、分析、综合等能力得不到提高。此外,还有自卑心理、厌学心理、封闭心理等等。这些心理障碍都不同程度地影响、制约、阻碍着中学生学习数学的积极性和主动性,使数学教学效益降低,教学质量得不到应有的提高。高一学生产生数学学习心理障碍的原因是复杂的,既有教师、家长、社会方面的因素,也有中学生自身的因素。既有主观的因素,也有客观的因素。具体讲,存在的影响因素有如下一些:①“应试教育”大气候影响,片面追求升学率、题海战术使得教师和学生都忙于应付;②初、高中教材间梯度过大;③高一新生普遍不适应高中数学教师的教学方法;④高一学生的学习方法不适应高中数学学习等等。二、在学习数学方面存在着初中学生常有的一些不良习惯。如:1、学习方法不合理:老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.2、忽略双基:一些同学,常轻视基本知识、基本技能和基本方法的学习与训练,对上课老师讲的例题只知道听懂了、明白了,而不知道作为例题的变数的灵活性。其中有这经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.3、思维思路的不合理:高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.针对以上问题来看,4、我校是农村中学,高中入学学生在数学成绩和学习态度方面有很多的不足之处,如有些学生数学成绩不很好,上课也就不认真,会开小差,这样在学习数学方面就更加的困难了。三、数学知识方面高中数学与初中数学也存在着较大的差异1、首先是知识的差异:初中数学知识少、浅、难度容易、知识面狭窄。高中数学知识广泛,对初中数学知识推广和引申,也是对初中数学知识的完善,比如不等式、三角函数、立体几何的学习使许多初中认为不可能解决的难题得以迎刃而解。2、学习方法的差异:初中数学量少知识面狭窄,要求的是学生在课堂能够把题目理解。而到了高中随着知识点的增加对学生不光是上课的认真听讲,模仿做题。同时更必须要求学生在课前课后都要认真学习,在不断的积累中增长知识。3、思维习惯上的差异:初中学生由于学习数学知识的范围小,知识层次低,知识面狭窄,对实际问题的思维受到了局限,就几何来说,我们接触的都是生活中三维空间,但初中只学习了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中的思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性。将会使学生全面、细致、深刻、严密的分析和解决问题,也将培养学生搞素质思维。提高学生的思维递进性。四、在学习数学方面存在着思维障碍。根据布鲁纳的认识发展理论,学习本身是一种认识过程,在这个过程中,个体的学习总是要通过已知的内部认知结构,对“从外到内”的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的“媒介点”,这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的“媒介点”时,这些新知识就会被排斥或经“校正”后吸收。因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利“交接”,那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。具体有如下表现:1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:1)学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏沿着多方面去探索解决问题的途径和方法。例如在课堂上我曾要求学生证明:如|a|≤1,|b|≤1,则。让学生思考片刻后提问,有相当一部分的同学是通过三角代换来证明的(设a=cosα,b=sinα),理由是|a|≤1,|b|≤1(事后统计这样的同学占到近20%)。这恰好反映了学生在思维上的肤浅,把两个毫不相干的量(a,b)建立了具体的联系。2)缺乏足够的抽象思维能力,学生往往善于处理一些直观的或熟悉的数学问题,而对那些不具体的、抽象的数学问题常常不能抓住其本质,转化为已知的数学模型或过程去分析解决。例:已知实数x、y满足,则点P(x,y)所对应的轨迹为()(A)圆(B)椭圆(C)双曲线(D)抛物线。在复习圆锥曲线时,我拿出这个问题后,学生一着手就简化方程,化简了半天还看不出结果就再找自己运算中的错误(怀疑自己算错),而不去仔细研究此式的结构进而可以看出点P到点(1,3)及直线x+y+1=0的距离相等,从而其轨迹为抛物线。2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。如非负实数x,y满足x+2y=1,求的最大、最小值。在解决这个问题时,如对x、y的范围没有足够的认识(0≤x≤1,0≤y≤),那么就容易产生错误。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。如函数y=f(x)满足f(2+x)=f(2-x)对任意实数x都成立,证明:函数y=f(x)的图象关于直线x=2对称。对于这个问题,一些基础好的同学都不大会做(主要反映写不清楚),我就动员学生看书,在函数这一章节中找相关的内容看,待看完奇、偶函数、反函数与原函数的图象对称性之后,学生也就能较顺利的解决这一问题了。3.数学思维定势的消极性:由于高中学生已经有相当丰富的解题经验,因此,有些学生往往对自己的某些想法深信不疑,很难使其放弃一些陈旧的解题经验,思维陷入僵化状态,不能根据新的问题的特点作出灵活的反应,常常阻抑更合理有效的思维甚至造成歪曲的认识。由此可见,学生数学思维障碍的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。针对上述影响高中数学成绩的因素,结合多年的教学经验,我提出几点解决法:一、克服数学学习的心理障碍,增强数学教学的吸引力方面。我认为要在:把握学生的心理状态,调动学生学习数学的积极性和创造性,使学生真正领悟和体会到学习数学的无穷乐趣,进而爱学、乐学、会学、学好的总原则之下。做好以下几个方面的工作:1、首先给高中学生介绍高中数学与初中数学学习特点的变化,帮助学生主动调控学习心理。(1)数学语言在抽象程度上突变高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。我们在教学中可以多应用理论联系实际降低思维难度,循序渐进地培养训练学生以形象、通俗的文字语言与符号语言和图形语言互相转化,提升学生的语言“悟”性。(2)思维方法向理性层次跃迁高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。我们在教学中要注重启发式教学,应用讨论式教学培养学生能力。(3)知识内容的整体数量剧增高中数学比初中数学在知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。这就需要我们在上课过程中,进行学习心理辅导,提出学习要求并及时检查督促。2.学会区别正常学习心理状态与不良的学习状态。(1)培养主动的学习态度,体会“要我学”与“我要学”的区别。我在教学中,注意培养学生主动的学习态度。(2)正确区别正常的心理与异常的心理状态。3.优化教与学策略,强化成就动机,科学地进行学习。(1)狠抓基础改变“一听就明”、“一看就会”、“一做就错”的学习误区。狠抓基础,即狠抓数学的基本知识、基本数学思想、基本数学方法。还要帮助学生体会高中数学与初中数学知识的深度、广度的区别,多用“问”、“想”、“做”、“评”的教学模式,鼓励思考,让学生在做中学,发展健全的人格。(2)联系实际一是指教师要深入调查研究,了解学生实际,包括学生学习、生活、家庭环境,兴趣爱好,特长优势,学习策略和水平等等;二是指数学教学内容要尽量联系生产生活实际;三是要加强实践,使学生在理论学习过程中初步体验到数学的实用价值。(3)注重过程揭示数学过程,既是数学学科体系的要求也是人类认识规律的要求,同时也是培养学生能力的需要。一是要揭示数学问题的提出或产生过程;二是要揭示新旧知识的衔接、联系和区别;三是要揭示解决问题的思维过程和思维方法;四是要对解题思路、解题方法、解题规律进行概括和总结。(4)讲究方法一是要重视教法研究,既要有利于学生接受理解,又不包代替,让学生充分动脑、动口、动手,掌握数学知识,掌握数学过程,掌握解题方法;二是要重视学法指导,即重视数学方法教学。数学学法指导范围广泛,内容丰富,它包括指导学生阅读数学教材,审题答题,进行知识体系的概括总结,进行自我检查和自我评定,对解题过程和数学知识体系、技能训练进行回顾和反思等等。二、在修正高中学生学习数学的不良习惯及数学知识的差异方面采用如下方法:1、加强家校联系,了解学生的心理需求和学习动机,了解学生的长处和优点,给学生以足够的信心。以提高他们的数学学习兴趣和学习成绩。2、准确的学习方法,良好的学习习惯。包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面:3、循序渐进,防止急躁由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.4、研究学科特点,寻找最佳学习方法数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的.5、加强辅导,化解分化点如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。三、在解决数学学习思维障碍方面,有以下几点看法:1、在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋度,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。2、重视数学思想方法的教学,指导学生提高数学意识。数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿哪道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。因此,在数学教学中只有加强数学意识的教学,如“因果转化意识”“类比转化意识”等的教学,才能使学生面对数学问题得心应手、从容作答。所以,提高学生的数学意识是突破学生数学思维障碍的一个重要环节。3、诱导学生暴露其原有的思维框架,消除思维定势的消极作用。在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于突破学生的数学思维障碍会起到极其重要的作用。例如:在学习了“函数的奇偶性”后,学生在判断函数的奇偶性时常忽视定义域问题,为此我们可设计如下问题:判断函数在区间[—4,2a]上的奇偶性。不少学生由f(―x)=―f(x)立即得到f(x)为奇函数。教师设问:①区间[—4,2a]有什么意义?②y=x2一定是偶函数吗?通过对这两个问题的思考学生意识到函数只有在a=2即定义域关于原点对称时才是奇函数。使学生暴露观点的方法很多。例如,教师可以与学生谈心的方法,可以用精心设计的诊断性题目,事先了解学生可能产生的错误想法,要运用延迟评价的原则,即待所有学生的观点充分暴露后,再提出矛盾,以免暴露不完全,解决不彻底。有时也可以设置疑难,讨论,疑难问题引人深思,选择学生不易理解的概念,不能正确运用的知识或容易混淆的问题让学生讨论,从错误中引出正确的结论,这样学生的印象特别深刻。而且通过暴露学生的思维过程,能消除消极的思维定势在解题中的影响。当然,为了消除学生在思维活动中只会“按部就班”的倾向,在教学中还应鼓励学生进行求异思维活动,培养学生善于思考、独立思考的方法,不满足于用常规方法取得正确答案,而是多尝试、探索最简单、最好的方法解决问题的习惯,发展思维的创造性也是突破学生思维障碍的一条有效途径。当前,高中课改已经向我们传统的高中数学教学提出了更高的要求。但只要我们坚持以学生为主体,以培养学生的思维发展为己任,则势必会提高高中学生数学教学质量,摆脱题海战术,真正减轻学生学习数学的负担,从而为提高高中学生的整体素质作出我们数学教师应有的贡献。
展开全部
放松心情。对自己说一定没问题的。加油加油!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[摘要]数学是小学教育中的重点科目,也是难点科目。培养孩子数学思维有利于孩子逻辑思维能力的培养,有利于孩子提高解决生活实际问题的能力。本文首先分析了数学思维能力培养的重要性,让后细致讨论了小学数学教学中数学思维能力培养的具体方法。旨在为小学数学教育工作者提供参考。
[关键词]小学数学;数学教学;思维能力
一、小学生数学思维能力培养的重要性
(一)解决问题能力:数学是一门最基本的个工具学科,在生活中应用非常广泛。小到家里来人吃饭添加碗筷,大到商品交易。具有良好的数学思维能够提高解决问题的效率,可以将数学模型与生活问题相结合,从而解决生活中的问题。所以,培养小学数学思维对于孩子后续的工作和生活都非常重要。例如,动画《猫和老鼠》中啄木鸟运用三角函数计算出切割木杆的角度,正好砸晕了要吃掉老鼠的猫。这是个卡通动画,但是其反映出了数学解决实际问题的重要作用。
(二)逻辑思维能力:数学是典型的理性思维,具有严密的逻辑性,培养孩子的数学思维,有利于学生在学习生活中做事严谨。当遇到问题时,会分析构成问题的各个要素之间的内在联系,然后找出解决问题的方法,具有良好的逻辑思维可以避免遇到问题时让情绪左右思维而无法跳出困境。
(三)数学兴趣培养:具有良好的数学思维,能够深入理解数学计算中的内在逻辑关系,从而体验到学习数学的乐趣,进而有利于培养出学习数学的兴趣。兴趣是最好的老师,当学生们在听数学课时兴趣盎然,教学效率和学习质量都会大幅度提高,进而解决了小学数学成为教学难点的问题。
二、小学数学教学中数学思维能力的培养方法
(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名著《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。
三、结语
综上所述,小学数学教学中数学思维能力的培养,要充分利用多媒体和互联网资源来激发学生学习数学的兴趣,要通过套构的方式来引导学生使用数学模型来解决问题,要通过逆向思维的方式来让学感受解决问题的成就感,要通过联系生活创设情境的方式来拉近数学与学生的距离,让学生切实感觉到数学的实用性。因此,小学数学教师要结合孩子的实际认知水平,选择适合孩子的教学素材来设计教学活动,从而让孩子在数学课堂上能够激发潜能,养成良好的数学思维能力。
[关键词]小学数学;数学教学;思维能力
一、小学生数学思维能力培养的重要性
(一)解决问题能力:数学是一门最基本的个工具学科,在生活中应用非常广泛。小到家里来人吃饭添加碗筷,大到商品交易。具有良好的数学思维能够提高解决问题的效率,可以将数学模型与生活问题相结合,从而解决生活中的问题。所以,培养小学数学思维对于孩子后续的工作和生活都非常重要。例如,动画《猫和老鼠》中啄木鸟运用三角函数计算出切割木杆的角度,正好砸晕了要吃掉老鼠的猫。这是个卡通动画,但是其反映出了数学解决实际问题的重要作用。
(二)逻辑思维能力:数学是典型的理性思维,具有严密的逻辑性,培养孩子的数学思维,有利于学生在学习生活中做事严谨。当遇到问题时,会分析构成问题的各个要素之间的内在联系,然后找出解决问题的方法,具有良好的逻辑思维可以避免遇到问题时让情绪左右思维而无法跳出困境。
(三)数学兴趣培养:具有良好的数学思维,能够深入理解数学计算中的内在逻辑关系,从而体验到学习数学的乐趣,进而有利于培养出学习数学的兴趣。兴趣是最好的老师,当学生们在听数学课时兴趣盎然,教学效率和学习质量都会大幅度提高,进而解决了小学数学成为教学难点的问题。
二、小学数学教学中数学思维能力的培养方法
(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名著《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。
三、结语
综上所述,小学数学教学中数学思维能力的培养,要充分利用多媒体和互联网资源来激发学生学习数学的兴趣,要通过套构的方式来引导学生使用数学模型来解决问题,要通过逆向思维的方式来让学感受解决问题的成就感,要通过联系生活创设情境的方式来拉近数学与学生的距离,让学生切实感觉到数学的实用性。因此,小学数学教师要结合孩子的实际认知水平,选择适合孩子的教学素材来设计教学活动,从而让孩子在数学课堂上能够激发潜能,养成良好的数学思维能力。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询