1个回答
2017-09-04
展开全部
解:
1) ( x --> 0 ) lim F(x) = ( x --> 0 ) lim { (0,x) ∫ f(u)du / x^2 }
= ( x --> 0 ) lim { f(x) / (2x) }
= (1/2) * ( x --> 0 ) lim { f(x) / x } = (1/2) * 1 = 1/2
令 F(0) = ( x --> 0 ) lim F(x)
有 a = 1/2
2)
x ≠ 0 时,
F'(x) = ( f(x) / x^2 - 2* (0,x) ∫ f(u)du / x^3
= [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3
x = 0 时,
F'(0) = ( x --> 0 ) lim {F(x) - F(0) ]/x } = (罗比达法则) =
= ( x --> 0 ) lim {F'(x) }
= ( x --> 0 ) lim { [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3 } = (罗比达法则) =
= ( x --> 0 ) lim { [ x * f'(x) - f(x) ] /(3* x^2) }
= ( x --> 0 ) lim { [ x * f"(x) ] /(6* x) }
= ( x --> 0 ) lim { f"(x) /6 }
= f"(0) /6
1) ( x --> 0 ) lim F(x) = ( x --> 0 ) lim { (0,x) ∫ f(u)du / x^2 }
= ( x --> 0 ) lim { f(x) / (2x) }
= (1/2) * ( x --> 0 ) lim { f(x) / x } = (1/2) * 1 = 1/2
令 F(0) = ( x --> 0 ) lim F(x)
有 a = 1/2
2)
x ≠ 0 时,
F'(x) = ( f(x) / x^2 - 2* (0,x) ∫ f(u)du / x^3
= [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3
x = 0 时,
F'(0) = ( x --> 0 ) lim {F(x) - F(0) ]/x } = (罗比达法则) =
= ( x --> 0 ) lim {F'(x) }
= ( x --> 0 ) lim { [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3 } = (罗比达法则) =
= ( x --> 0 ) lim { [ x * f'(x) - f(x) ] /(3* x^2) }
= ( x --> 0 ) lim { [ x * f"(x) ] /(6* x) }
= ( x --> 0 ) lim { f"(x) /6 }
= f"(0) /6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询