什么叫科学记数法
5个回答
展开全部
科学记数法是一种数学专用术语。将一个数表示成 a×10的n次幂的形式,其中1≤|a|<10,n为整数,这种记数方法叫科学记数法。例如920000可以表示为9.2*105,读作9.2乘10的5次方
1表现形式编辑
科学记数法(scientific notation)用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000人。常在物理上见到这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
102=100,103=1000,104=10000,105 =100000……10n=1……(后面跟n个零)
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=6.1×1 000 000 000=6.1×109
任何实数的1次方都等于它本身。
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数(即整数部分只有一位,小数部分任意),n是整数【正负都有,除0外】。
科学记数法是指把一个数表示成a×10的n次幂的形式(1≤|a|<10,n 为整数。)
科学记数法可以很方便地表示一些绝对值较大的数,同样,用科学记数法也可以很方便地表示一些绝对值较小的数。
一般地,一个小于1的正数可以表示为a×10ⁿ,其中1≤|a|<10,n是负整数。
2有效数字编辑
在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。
例如:890314000保留三位有效数字为8.90×10的8次方;
839960000保留三位有效数字为8.40×10的8次方;
0.00934593保留三位有效数字为9.35×10的-3次方……
3基本运算编辑
数字很大的数,一般我们用科学记数法表示,例如6230000000000;我们可以用6.23×1012表示,而它含义是什么呢?从字面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在记数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即aEc+bEc=(a+b)Ec(1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即aEc-bEc=(a-b)Ec(2)
3. 3000000×60000=180’000’000’000
3e6*6e4=1.8e11
即aEM×bEN=abE(M+N)(3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即aEM÷bEN=a/bE(M-N)(4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a3E3c
(aEc)^n=a^nEnc
a×10lgb=ab
aElgb=ab
4速写法编辑
对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
如180’000’000’000,除最高位1外尚有11位,故科学记数法写作1.8×1011或1.8E11。
10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593*10^-3或9.34593E-3。即第一个非零数字前的0的个数为n,就为10^-n(n≥0)
6公式编辑
3E4E5=30000E5=3E9
即aEbEc=aE(b+c)
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aE(b+c+d)
得aEa1Ea2Ea3.......Ean=aE〔a1+a2+a3+.......+an〕
7数列编辑
据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n-1)/2×d
aEna1+n(n-1)/2×d
等比n项和公式
或
aESn [
或
]
数列通项记数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^(n-1)
8.aEb与aE-b
aEb=a×10^b
aE-b=a×10^-b 正负b决定E的方向
科学记数意义
“aE”表示并非具有科学记数意义,并且aE=a
“Ea”表示具有科学记数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb
1表现形式编辑
科学记数法(scientific notation)用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000人。常在物理上见到这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
102=100,103=1000,104=10000,105 =100000……10n=1……(后面跟n个零)
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=6.1×1 000 000 000=6.1×109
任何实数的1次方都等于它本身。
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数(即整数部分只有一位,小数部分任意),n是整数【正负都有,除0外】。
科学记数法是指把一个数表示成a×10的n次幂的形式(1≤|a|<10,n 为整数。)
科学记数法可以很方便地表示一些绝对值较大的数,同样,用科学记数法也可以很方便地表示一些绝对值较小的数。
一般地,一个小于1的正数可以表示为a×10ⁿ,其中1≤|a|<10,n是负整数。
2有效数字编辑
在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。
例如:890314000保留三位有效数字为8.90×10的8次方;
839960000保留三位有效数字为8.40×10的8次方;
0.00934593保留三位有效数字为9.35×10的-3次方……
3基本运算编辑
数字很大的数,一般我们用科学记数法表示,例如6230000000000;我们可以用6.23×1012表示,而它含义是什么呢?从字面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在记数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即aEc+bEc=(a+b)Ec(1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即aEc-bEc=(a-b)Ec(2)
3. 3000000×60000=180’000’000’000
3e6*6e4=1.8e11
即aEM×bEN=abE(M+N)(3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即aEM÷bEN=a/bE(M-N)(4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a3E3c
(aEc)^n=a^nEnc
a×10lgb=ab
aElgb=ab
4速写法编辑
对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
如180’000’000’000,除最高位1外尚有11位,故科学记数法写作1.8×1011或1.8E11。
10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593*10^-3或9.34593E-3。即第一个非零数字前的0的个数为n,就为10^-n(n≥0)
6公式编辑
3E4E5=30000E5=3E9
即aEbEc=aE(b+c)
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aE(b+c+d)
得aEa1Ea2Ea3.......Ean=aE〔a1+a2+a3+.......+an〕
7数列编辑
据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n-1)/2×d
aEna1+n(n-1)/2×d
等比n项和公式
或
aESn [
或
]
数列通项记数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^(n-1)
8.aEb与aE-b
aEb=a×10^b
aE-b=a×10^-b 正负b决定E的方向
科学记数意义
“aE”表示并非具有科学记数意义,并且aE=a
“Ea”表示具有科学记数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb
展开全部
将一个数字表示成 (a×10的n次幂的形式),其中1≤a<10,n表示整数,这种记数方法叫科学记数法。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=61×1 000 000 000=6.1×10的九次方。
任何非0实数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=61×1 000 000 000=6.1×10的九次方。
任何非0实数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
科学记数法是一种记数的方法.把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数),这种记数法叫做科学记数法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
什么是科学记数法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-09-21
展开全部
如果地没有裂,楼没有倒,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |