函数的赋值法是怎样的?
1个回答
展开全部
你好 !赋值法主要用在抽象函数中,
可以求函数值、证明函数的单调性,奇偶性,最值等问题
下面举一例说明,希望对你有所帮助
例:已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2
(1)判断函数f(x)的奇偶数。
(2)当x∈[-3,3]时,函数f(x)是否有最值?如果有,求出最值;如果没有,请说明理由。
解:令 x=y=0
得到f(0)=0
f(0)=f(x + -x)= f(x)+ f(-x) 奇函数
设 x1<x2 x2-x1=m>0
f(x2)=f(x1+m)=f(x1)+f(m)
因为f(m)>0 f(m)<0
f(x2)<f(x1) 递减
递减函数 最大值 是 f(-3) 最小值 f(3)
f(-1)=-f(1)= 2
f(-2)= 2f(-1)=4
f(-3)=f(-2)+f(-1)=6
同理 f(3)= -6
可以求函数值、证明函数的单调性,奇偶性,最值等问题
下面举一例说明,希望对你有所帮助
例:已知二次函数f(x)对任意x、y∈R都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2
(1)判断函数f(x)的奇偶数。
(2)当x∈[-3,3]时,函数f(x)是否有最值?如果有,求出最值;如果没有,请说明理由。
解:令 x=y=0
得到f(0)=0
f(0)=f(x + -x)= f(x)+ f(-x) 奇函数
设 x1<x2 x2-x1=m>0
f(x2)=f(x1+m)=f(x1)+f(m)
因为f(m)>0 f(m)<0
f(x2)<f(x1) 递减
递减函数 最大值 是 f(-3) 最小值 f(3)
f(-1)=-f(1)= 2
f(-2)= 2f(-1)=4
f(-3)=f(-2)+f(-1)=6
同理 f(3)= -6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询