f(x)=(sinx+cosx)²+2cos²x化简
展开全部
f(x)=(sinx+cosx)²+2cos²x
=sin²x+cos²x+2sinxcosx+1+cos2x
=1+sin2x+1+cos2x
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2(sinxcosπ/4 +cosxsinπ/4)+2
=√2sin(x+ π/4)+2
=sin²x+cos²x+2sinxcosx+1+cos2x
=1+sin2x+1+cos2x
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2(sinxcosπ/4 +cosxsinπ/4)+2
=√2sin(x+ π/4)+2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用xuzhouliuying的回答:
f(x)=(sinx+cosx)²+2cos²x
=sin²x+cos²x+2sinxcosx+1+cos2x
=1+sin2x+1+cos2x
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2(sinxcosπ/4 +cosxsinπ/4)+2
=√2sin(x+ π/4)+2
f(x)=(sinx+cosx)²+2cos²x
=sin²x+cos²x+2sinxcosx+1+cos2x
=1+sin2x+1+cos2x
=sin2x+cos2x+2
=√2[(√2/2)sin2x+(√2/2)cos2x]+2
=√2(sinxcosπ/4 +cosxsinπ/4)+2
=√2sin(x+ π/4)+2
展开全部
fx=√2sin(2x+∏/4)+2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询