
如图求定积分
展开全部
令x = tanθ,dx = sec²θ dθ
∫(0→1) (1 + x²)^(- 3/2) dx
= ∫(0→π/4) (1 + tan²θ)^(- 3/2) · sec²θ dθ
= ∫(0→π/4) (secθ)⁻³ · sec²θ dθ
= ∫(0→π/4) cosθ dθ
= sinθ:0→π/4
= sin(π/4) - sin(0)
= √2/2
∫(0→1) (1 + x²)^(- 3/2) dx
= ∫(0→π/4) (1 + tan²θ)^(- 3/2) · sec²θ dθ
= ∫(0→π/4) (secθ)⁻³ · sec²θ dθ
= ∫(0→π/4) cosθ dθ
= sinθ:0→π/4
= sin(π/4) - sin(0)
= √2/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |