一个直角三角形中,已知一条边长和一个角度,怎样求另一边长?

 我来答
爱emily188
推荐于2019-09-11 · TA获得超过1.6万个赞
知道小有建树答主
回答量:176
采纳率:100%
帮助的人:2.5万
展开全部

勾股定理:a²+b²=c²
如果知道a或b的平方,就可以用a或b加一个小数字来尝试
知道c的长度,就把它拆成两个和比自己大的数字来验证

勾股定理

如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;; 即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:

,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理) 直角三角形由 毕达哥拉斯在公元前550年提出。

有一个 角为 直角的三角形称为 直角三角形。在直角三角形中,与直角相邻的两条边称为 直角边,直角所对的边称为 斜边。直角三角形直角所对的边也叫作“ 弦”。若两条直角边不一样长,短的那条边叫作“ 勾”,长的那条边叫作“ 股”。

中文名直角三角形别 称Rt△提出时间2016.3.10适用领域范围三角形内角和度数180度    外文名right triangle表达式Rt△ABC应用学科数学分类方法按角或边分类    


  • 1图形示列

  • 2判定定理

  • 3特殊性质

  • 4判定方法

  • 5基本简介

  • 6相关线段

  • 7勾股定理

  • 8应用举例

  • 9斜边公式

  • 10三角函数

  • 11解三角形

  • 解法含义

  • 解法归纳

  • 1图形示列

    编辑

    直角三角形如图所示:分为两种情况,有普通的直角三 直角三角形角形,还有 等腰直角三角形(特殊情况)

    2判定定理

    编辑

    等腰直角三角形是一种特殊的三角形

    等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°。两 直角边相等,两锐角为45°,斜边上 中线、 角平分线、 垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。

    3特殊性质

    编辑

    它除了具有一般三角形的性质外,具有一些特殊的性质 :

    性质1:直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²( 勾股定理)

    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°

    性质3:在直角三角形中, 斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点, 外接圆半径R=C/2)。该性质称为 直角三角形斜边中线定理

    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

    性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有 射影定理如下:直角三角形

    (1)(AD)²=BD·DC。

    (2)(AB)²=BD·BC。

    (3)(AC)²=CD·BC。

    射影定理,又称“ 欧几里德定理”:在 直角三角形中,斜边上的高是两条 直角边在斜边射影的比例中项,每一条 直角边又是这条直角边在斜边上的射影和斜边的 比例中项。是 数学图形计算的重要定理。

    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。

    证明方法多种,下面采取较简单的几何证法。

    先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2

    ∵∠A=30°

    ∴∠B=60°(直角三角形两锐角互余)

    取AB中点D,连接CD,根据 直角三角形斜边中线定理可知CD=BD

    ∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)

    ∴BC=BD=AB/2

    再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°

    取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)

    又∵BC=AB/2

    ∴BC=CD=BD

    ∴∠B=60°

    ∴∠A=30°

    性质7:如图, 在Rt△ABC中∠BAC=90°,AD是斜边上的高,则:

    证明:S△ABC=1/2*AB*AC=1/2*AD*BC

    两边乘以2,再平方得AB²*AC²=AD²*BC²

    运用勾股定理,再两边除以

    ,最终化简即得

    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

    4判定方法

    编辑

    判定1:有一个角为90°的三角形是直角三角形。

    判定2:若

    ,则以a、b、c为边的三角形是以c为斜边的直角三角形( 勾股定理的逆定理)。

    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为 斜边的直角三角形。

    判定4:两个锐角 互为余角(两角相加等于 90°)的三角形是直角三角形。

    判定5:若两直线相交且它们的 斜率之积互为 负倒数,则两直线互相垂直。那么这个三角形为直角三角形。

    判定6:若在一个三角形中一边上的 中线等于其所在边的一半,那么这个三角形为直角三角形。参考 直角三角形斜边中线定理

    判定7:一个三角形 30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。

    判定3和7的证明:

    已知△ABC中,∠A=30°,∠A,∠C对的边分别为a,c,且a=

    c。求证∠C=90°

    证法1:

    正弦定理,在△ABC中,有a:sinA=c:sinC

    将a与c的关系及∠A的度数代入之后化简得sinC=1

    又∵0<∠C<180°

    ∴∠C=90°

    证法2

    反证法,假设∠ACB≠90°,过B作BD⊥AC于D

    在Rt△ABD中,∵∠ADB=90°,∠A=30°

    ∴BD=

    AB(30°的直角边等于斜边的一半)

    又∵BC

    AB

    ∴BC=BD

    但BD是B到直线AC的垂线段,根据垂线段最短可知BD

    (或从BC=BD得∠BCD=∠BDC=90°,那么△BCD中就有两个直角,这是不可能的事情)

    ∴假设不成立,∠ACB=90°

    证法3

    利用三角形的外接圆证明

    作△ABC的外接圆,设圆心为O,连接OC,OB

    ∵∠BAC=30°,A在圆上

    ∴∠BOC=60°

    ∵OB=OC=半径r

    ∴△BOC是等边三角形,BC=OC=r

    又∵AB=2BC=2r

    ∴AB是直径

    ∴∠ACB=90°(直径所对的圆周角是直角)

    应用举例

    编辑

    直角三角形如图1,是屋架设计图的一部分,点D是斜梁AB的中点

    立柱为BC,DE垂直于横梁AC,AB=7.4m,∠A=30°,求BC、DE要多长?

    解:∵DE⊥AC,BC⊥AC,∠A=30°

教育小百科达人
2019-03-17 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

勾股定理:a²+b²=c²如果知道a或b的平方,就可以用a或b加一个小数字来尝试知道c的长度,就把它拆成两个和比自己大的数字来验证。

勾股定理:如果直角三角形两直角边分别为A,B,斜边为C,那么A^2+B^2=C^2,即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2。

如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证 法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。

扩展资料:

在这个定理的证明中,我们需要如下四个辅助定理:

1、如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

2、三角形面积是任一同底同高之平行四边形面积的一半。

3、任意一个正方形的面积等于其二边长的乘积。

4、任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

参考资料来源:百度百科——勾股定理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式