积分上限函数uf(u)du(0到x)求导后为多少
展开全部
求导后为 xf(x)
在定积分中,求导等于
上限倒数·函数-下限倒数·函数
对F(X)求导,就有
那么[F(X)]‘=(1/n)[nx^(n-1)f(x^n)-下限倒数为0]
=(1/n)·n·x^(n-1)·f(x^n)
=x^(n-1)·f(x^n)
定积分求导就是这么算的,上限倒数·函数-下限倒数·函数 1。
定义积分
方法不止一种,各种定义之间也不是完全等价的。其中的差别主要是在定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询