方程xy=e^(x+y)确定的隐函数y的导数是多少?

 我来答
教育小百科达人
2019-03-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:472万
展开全部

方程xy=e^(x+y)确定的隐函数y的导数:y'=[e^(x+y)-y]/[x-e^(x+y)]

解题过程:

方程两边求导: 

y+xy'=e^(x+y)(1+y')  

y+xy'=e^(x+y)+y'e^(x+y) 

y'[x-e^(x+y)]=e^(x+y)-y 

得出最终结果为:y'=[e^(x+y)-y]/[x-e^(x+y)]

如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。关系用y=f(x)即显函数来表示。

扩展资料:

如果不限定函数连续,则式中正负号可以随x而变,因而有无穷个解;如果限定连续,则只有两个解(一个恒取正号,一个恒取负号);如果限定可微,则要排除x=±1,因而函数的定义域应是开区间(-1<x<1),但仍然有两个解。

在适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=ƒ(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。

参考资料来源:百度百科——隐函数

鱼小喵的chris
推荐于2019-10-21 · TA获得超过1868个赞
知道答主
回答量:39
采纳率:25%
帮助的人:5615
展开全部

方程xy=e^(x+y)确定的隐函数y的导数:

y'=[e^(x+y)-y]/[x-e^(x+y)]

解题过程:

方程两边求导: 

y+xy'=e^(x+y)(1+y')  

y+xy'=e^(x+y)+y'e^(x+y) 

y'[x-e^(x+y)]=e^(x+y)-y 

得出最终结果为:

y'=[e^(x+y)-y]/[x-e^(x+y)]

隐函数求导方法:

1.先把隐函数转化成显函数,再利用显函数求导的方法求导。

2.隐函数左右两边对x求导。

3.利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。

4.把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-02-14 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1598万
展开全部

直接用书上的公式法,简单快捷

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友d576111
2021-01-02
知道答主
回答量:1
采纳率:0%
帮助的人:535
展开全部
两边求导:y+xy'=e∧x+y+y'e∧x+y
xy'-y'e∧x+y=e∧x+y-y
y'=e∧x+y-y╱x-e∧x+y
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
出群6e
2019-12-23 · TA获得超过4677个赞
知道答主
回答量:3.2万
采纳率:34%
帮助的人:1068万
展开全部
方程这个确定隐函数导数是什么?找一大学教授为您解答。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式