
求极限问题?
2018-07-12
展开全部
∫(x/2,x) e^(xt)/tdt 令u=xt,则t=u/x,dt=du/x =∫(x^2/2,x^2) e^u/(u/x)*du/x =∫(x^2/2,x^2) e^u/udu 所以原极限=lim(x->0) [∫(x/2,x) e^(xt)/tdt-∫(x/2,x) 1/tdt]/sin(x^2) =lim(x->0) [∫(x^2/2,x^2) e^u/udu-∫(x/2,x) 1/tdt]/(x^2) =lim(x->0) [2x*e^(x^2)/x^2-x*e^(x^2/2)/(x^2/2)-1/x+(1/2)*2/x]/2x =lim(x->0) [e^(x^2)-e^(x^2/2)]/x^2 =lim(x->0) [e^(x^2)*2x-e^(x^2/2)*x]/2x =lim(x->0) [e^(x^2)-(1/2)*e^(x^2/2)] =1-1/2 =1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询