高数多元函数积分题目
高数多元函数积分题目答案为什么要令α=……,ρ=……又为什么α不是ρ的高阶无穷小,f(0,0)就不可微,解释一下,谢谢了...
高数多元函数积分题目答案为什么要令α=……,ρ=……
又为什么α不是ρ的高阶无穷小,f(0,0)就不可微,解释一下,谢谢了 展开
又为什么α不是ρ的高阶无穷小,f(0,0)就不可微,解释一下,谢谢了 展开
1个回答
2018-09-09
展开全部
因为定义就是这啊。
定义:
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=((△x)^2+(△y)^2)^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微。
定义:
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=((△x)^2+(△y)^2)^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询