不定积分求解?
5个回答
展开全部
设2x/[(1+x)(1+x^2)^2]
=a/(x+1)+(bx+c)/(1+x^2)+(dx+e)/(1+x^2)^2,
则2x=a(1+x^2)^2+(bx+c)(x+1)(1+x^2)+(dx+e)(x+1)
=ax^4...................+2ax^2+............+a
+bx^4+(b+c)x^3+cx^2
.................................+bx^2+(b+c)x+c
.................................+dx^2+(d+e)x+e
=(a+b)x^4+(b+c)x^3+(2a+b+c+d)x^2+(b+c+d+e)x+a+c+e,
比较系数得a+b=b+c=2a+b+c+d=a+c+e=0,b+c+d+e=2,
解得a=c=-1/2,b=1/2,d=e=1.
所以∫2xdx/[(1+x)(1+x^2)^2]
=∫[(-1/2)/(x+1)+(x/2-1/2)/(1+x^2)+(x+1)/(1+x^2)^2]dx
=(-1/2)ln|x+1|+(1/4)ln(1+x^2)-(1/2)/(1+x^2)+x/[2(1+x^2)]+c.
=a/(x+1)+(bx+c)/(1+x^2)+(dx+e)/(1+x^2)^2,
则2x=a(1+x^2)^2+(bx+c)(x+1)(1+x^2)+(dx+e)(x+1)
=ax^4...................+2ax^2+............+a
+bx^4+(b+c)x^3+cx^2
.................................+bx^2+(b+c)x+c
.................................+dx^2+(d+e)x+e
=(a+b)x^4+(b+c)x^3+(2a+b+c+d)x^2+(b+c+d+e)x+a+c+e,
比较系数得a+b=b+c=2a+b+c+d=a+c+e=0,b+c+d+e=2,
解得a=c=-1/2,b=1/2,d=e=1.
所以∫2xdx/[(1+x)(1+x^2)^2]
=∫[(-1/2)/(x+1)+(x/2-1/2)/(1+x^2)+(x+1)/(1+x^2)^2]dx
=(-1/2)ln|x+1|+(1/4)ln(1+x^2)-(1/2)/(1+x^2)+x/[2(1+x^2)]+c.
追问
谢谢,我的问题解决了
追答
知道了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
let
2x/[(1+x).(1+x^2)^2] ≡ A/(1+x) + (Bx+C)/(1+x^2) + (Dx+E)/(1+x^2)^2
=>
2x≡ A(1+x^2)^2 + (Bx+C)(1+x)(1+x^2) + (Dx+E)(1+x)
x=-1, => A = -1/2
coef. of x^4,
A+B=0
B= 1/2
coef. of x^3
B+C =0
C= -1/2
coef. of constant
A +C + E =0
-1/2 -1/2 + E =0
E = 1
x=1
A(1+x^2)^2 + (Bx+C)(1+x)(1+x^2) + (Dx+E)(1+x) =2x
4A +4(B+C)+2(D+E) =2
4A+4B+4C+2D +E =2
4(-1/2) +4(1/2)+4(-1/2)+2D +1 =2
-2+2D +1 =2
D = 3/2
ie
2x/[(1+x).(1+x^2)^2]
≡(1/2)[ -1/(1+x) + (x-1)/(1+x^2) + (3x+6)/(1+x^2)^2 ]
≡(1/2){-1/(1+x) +(1/2)[2x/(1+x^2)]- 1/(1+x^2)+(3/2)[2x/(1+x^2)^2]+ 6/(1+x^2)^2}
∫2x/[(1+x).(1+x^2)^2] dx
=(1/2){-ln|1+x| + (1/2)ln|1+x^2| - arctanx -(3/2)[ 1/(1+x^2)] } + 3∫dx/(1+x^2)^2
=(1/2){-ln|1+x| + (1/2)ln|1+x^2| - arctanx -(3/2)[ 1/(1+x^2)] }
+(3/2){ arctanx +(1/2)[x/(1+x^2)] }+ C
consider
x=tanu
dx=(secu)^2 du
∫dx/(1+x^2)^2
=∫(secu)^2 du/(secu)^4
=∫ (cosu)^2 du
=(1/2)∫ (1+cos2u) du
=(1/2)[ u +(1/2)sin2u] + C'
=(1/2){ arctanx +(1/2)[x/(1+x^2)] }+ C'
2x/[(1+x).(1+x^2)^2] ≡ A/(1+x) + (Bx+C)/(1+x^2) + (Dx+E)/(1+x^2)^2
=>
2x≡ A(1+x^2)^2 + (Bx+C)(1+x)(1+x^2) + (Dx+E)(1+x)
x=-1, => A = -1/2
coef. of x^4,
A+B=0
B= 1/2
coef. of x^3
B+C =0
C= -1/2
coef. of constant
A +C + E =0
-1/2 -1/2 + E =0
E = 1
x=1
A(1+x^2)^2 + (Bx+C)(1+x)(1+x^2) + (Dx+E)(1+x) =2x
4A +4(B+C)+2(D+E) =2
4A+4B+4C+2D +E =2
4(-1/2) +4(1/2)+4(-1/2)+2D +1 =2
-2+2D +1 =2
D = 3/2
ie
2x/[(1+x).(1+x^2)^2]
≡(1/2)[ -1/(1+x) + (x-1)/(1+x^2) + (3x+6)/(1+x^2)^2 ]
≡(1/2){-1/(1+x) +(1/2)[2x/(1+x^2)]- 1/(1+x^2)+(3/2)[2x/(1+x^2)^2]+ 6/(1+x^2)^2}
∫2x/[(1+x).(1+x^2)^2] dx
=(1/2){-ln|1+x| + (1/2)ln|1+x^2| - arctanx -(3/2)[ 1/(1+x^2)] } + 3∫dx/(1+x^2)^2
=(1/2){-ln|1+x| + (1/2)ln|1+x^2| - arctanx -(3/2)[ 1/(1+x^2)] }
+(3/2){ arctanx +(1/2)[x/(1+x^2)] }+ C
consider
x=tanu
dx=(secu)^2 du
∫dx/(1+x^2)^2
=∫(secu)^2 du/(secu)^4
=∫ (cosu)^2 du
=(1/2)∫ (1+cos2u) du
=(1/2)[ u +(1/2)sin2u] + C'
=(1/2){ arctanx +(1/2)[x/(1+x^2)] }+ C'
追问
谢谢,我的问题解决了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询