一道高数极限题求助
展开全部
lim(x->0+) (e^x -1) arctan(1/x) /√[ cosx - (cosx)^2]
=(π/2) lim(x->0+) (e^x -1) /√[ cosx - (cosx)^2]
=(π/2) lim(x->0+) (e^x -1) / [√cosx .√( 1-cosx) ]
=(π/2) lim(x->0+) (e^x -1) / √( 1-cosx)
=(π/信腊庆2) lim(x->0+) x/ √( 1-cosx)
=(π/2) lim(x->0+) x/ [(√2/局神2)x ]
=(√2/2)π
lim(x->0-) (e^x -1) arctan(1/x) /√[ cosx - (cosx)^2]
=-(π/2) lim(x->0-) (e^x -1) /√[ cosx - (cosx)^2]
=-(π/2) lim(x->0-) (e^x -1) / [√cosx .√( 1-cosx) ]
=-(π/滑握2) lim(x->0-) (e^x -1) / √( 1-cosx)
=-(π/2) lim(x->0-) x/ √( 1-cosx)
=-(π/2) lim(x->0-) x/ [-(√2/2)x ]
=(√2/2)π
=>
lim(x->0) (e^x -1) arctan(1/x) /√[ cosx - (cosx)^2]
=(√2/2)π
=(π/2) lim(x->0+) (e^x -1) /√[ cosx - (cosx)^2]
=(π/2) lim(x->0+) (e^x -1) / [√cosx .√( 1-cosx) ]
=(π/2) lim(x->0+) (e^x -1) / √( 1-cosx)
=(π/信腊庆2) lim(x->0+) x/ √( 1-cosx)
=(π/2) lim(x->0+) x/ [(√2/局神2)x ]
=(√2/2)π
lim(x->0-) (e^x -1) arctan(1/x) /√[ cosx - (cosx)^2]
=-(π/2) lim(x->0-) (e^x -1) /√[ cosx - (cosx)^2]
=-(π/2) lim(x->0-) (e^x -1) / [√cosx .√( 1-cosx) ]
=-(π/滑握2) lim(x->0-) (e^x -1) / √( 1-cosx)
=-(π/2) lim(x->0-) x/ √( 1-cosx)
=-(π/2) lim(x->0-) x/ [-(√2/2)x ]
=(√2/2)π
=>
lim(x->0) (e^x -1) arctan(1/x) /√[ cosx - (cosx)^2]
=(√2/2)π
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询