根号2aX-X^2怎么求积分
根号2aX-X^2积分如下:
设x=asint,则dx=dasint=acostdt,可以得到:a^2-x^2=a^2-a^2sint^2=a^2cost^2。
∫√(a^2-x^2)dx=∫acost*acostdt=a^2∫cost^2dt=a^2。
(cos2t+1)/2dt=a^2/4∫(cos2t+1)d2t=a^2/4*(sin2t+2t)。
将x=asint代回,得:∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+C(C为常数)。
不定积分的积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) 。
(a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
不定积分:
设函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数。
x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
定积分:
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。