
展开全部
设P=xf(y),Q=yf(x),R=-z[b+f(x+y)],积分恒为零,则
P对y的偏导数≡Q对x的偏导数
Q对z的偏导数≡R对y的偏导数
R对x的偏导数≡P对z的偏导数
得f'(x+y)=0,所以f(x)是常函数,f(x)≡a。
f(2010)=a
P对y的偏导数≡Q对x的偏导数
Q对z的偏导数≡R对y的偏导数
R对x的偏导数≡P对z的偏导数
得f'(x+y)=0,所以f(x)是常函数,f(x)≡a。
f(2010)=a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询