怎么用二阶导数判断极大值和极小值
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。假定x0处二阶导数大于0。
由连续性,在x0的邻域内,二阶导数恒正,一阶导数递增,那么x0左侧一阶导数就0,原函数f(x)左减右增,f(x0)极小.类似导论另一种情形,二阶导数在讨论极值时,没有直接的解释,而是在讨论函数凹凸性时有直接意义:二阶导数大于0,函数凹,二阶导数小于0。
扩展资料:
二阶导数原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。
参考资料来源:百度百科-二阶导数
2021-01-25 广告
具体回答如图:
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
扩展资料
需要注意以下几点:
(1)极大值、极小值是一个局部概念。由定义,极大值、极小值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小,因此,极大值、极小值不同于最大值、最小值。
(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个。
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,极小值也未必小于极大值。
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
扩展资料:
二阶导数原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。
如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。
参考资料来源:百度百科——二阶导数
f(x)'=dy/dx
f(x)''=d^2y/dx^2