求极限 lim(x趋于0)[sinx/x]^(1/x^2) 急,如题
展开全部
lim[sinx/x]^(1/x²)
x→0
=lim[(x+sinx-x)/x]^(1/x²)
x→0
=lim[1+(sinx-x)/x]^{[(x/sinx-x)(sinx-x)/x](1/x²)}
x→0
=lim e^{[(sinx-x)/x](1/x²)}
x→0
=lim e^[(sinx-x)/x³]
x→0
=lim e^[(cosx-1)/3x²]
x→0
=lim e^[-sinx/6x]
x→0
=e^(-1/6)
x→0
=lim[(x+sinx-x)/x]^(1/x²)
x→0
=lim[1+(sinx-x)/x]^{[(x/sinx-x)(sinx-x)/x](1/x²)}
x→0
=lim e^{[(sinx-x)/x](1/x²)}
x→0
=lim e^[(sinx-x)/x³]
x→0
=lim e^[(cosx-1)/3x²]
x→0
=lim e^[-sinx/6x]
x→0
=e^(-1/6)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询