求定积分∫(0,1)√1-x²dx
3个回答
展开全部
令x=sint ,dx=costdt 当x=0时,t=0,当x=1时,t=π/2
∫(0,1)根号下[1-x^2]dx
= ∫(0,π/2)√(1-sin²t)costdt
= ∫(0,π/2)√(1-sin²t)costdt
=∫(0,π/2)cos²tdt
=∫(0,π/2) [(cos2t +1)/2]dt
=1/2∫(0,π/2)cos2t+1dt
=1/2[1/2∫(0,π/2)cos2td2t+∫(0,π/2)dt]
=1/2[1/2(sinπ-sin0)+(π/2-0)]
=1/2×π/2
=π/4
∫(0,1)根号下[1-x^2]dx
= ∫(0,π/2)√(1-sin²t)costdt
= ∫(0,π/2)√(1-sin²t)costdt
=∫(0,π/2)cos²tdt
=∫(0,π/2) [(cos2t +1)/2]dt
=1/2∫(0,π/2)cos2t+1dt
=1/2[1/2∫(0,π/2)cos2td2t+∫(0,π/2)dt]
=1/2[1/2(sinπ-sin0)+(π/2-0)]
=1/2×π/2
=π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询