证明若f(x)极限存在,则极限值唯一

 我来答
百度网友036eb9c5099
2020-03-13 · TA获得超过1136个赞
知道小有建树答主
回答量:1877
采纳率:100%
帮助的人:11.1万
展开全部
假设f(x)存在两个极限,分别为a和b,不妨设a<b.则对ε0=(b-a)/2>0,存在正数δ1,当0<|x-x0|<δ1时,有|f(x)-a|<ε0=(b-a)/2,从而f(x)<(a+b)/2;同理存在δ2,当0<|x-x0|<δ2时,有|f(x)-b|<ε0=(b-a)/2,从而f(x)>(a+b)/2.取δ=min{δ1,δ2},则当0<|x-x0|<δ时,f(x)<(a+b)/2和f(x)>(a+b)/2同时成立,这是不可能的.所以若f(x)极限存在,则极限值唯一.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式