求过曲线x²/4+y²=1上任意一点的切线
过曲线x^2/4+y^2=1(x>=0,y>=0)上一点引切线,..过曲线x^2/4+y^2=1(x>=0,y>=0)上一点引切线,分别与x轴正半轴和y轴正半轴交于A,B...
过曲线x^2/4+y^2=1(x>=0,y>=0)上一点引切线,..
过曲线x^2/4+y^2=1(x>=0,y>=0)上一点引切线,分别与x轴正半轴和y轴正半轴交于A,B两点,求当线段AB的绝对值最小时切点坐标
用导数怎么求? 展开
过曲线x^2/4+y^2=1(x>=0,y>=0)上一点引切线,分别与x轴正半轴和y轴正半轴交于A,B两点,求当线段AB的绝对值最小时切点坐标
用导数怎么求? 展开
1个回答
展开全部
设F(x,y)=x^2/4+y^2-1
Fx=x/2
Fy=2y
故过(x0,y0)点的切线方程为
(x0/2)*(x-x0)+(2*y0)(y-y0)=0
即x0*x/4+y0*y=1
截距分别为
4/(x0)和1/(y0)
设x0=2cost,则y0=sint
AB的平方=截距的平方和=4/(sin2t*sin2t)
当sin2t=+1或-1时最小 即t=π/4,3π/4,5π/4,7π/4
此时(x0,y0)为(+_√2,+_√2/2)
Fx=x/2
Fy=2y
故过(x0,y0)点的切线方程为
(x0/2)*(x-x0)+(2*y0)(y-y0)=0
即x0*x/4+y0*y=1
截距分别为
4/(x0)和1/(y0)
设x0=2cost,则y0=sint
AB的平方=截距的平方和=4/(sin2t*sin2t)
当sin2t=+1或-1时最小 即t=π/4,3π/4,5π/4,7π/4
此时(x0,y0)为(+_√2,+_√2/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询