
cosx的4次方的不定积分
展开全部
原式=(1/4)∫(1+cos2x)^2dx
=(1/4)∫[1+2cos2x+(cos2x)^2]dx
=x/4+(sinx)/4+(1/8)∫(1+cos4x)dx
=x/4+(sinx)/4+x/8+(sin4x)/32+C
=3x/8+(sinx)/4+(sin4x)/32+C
=(1/4)∫[1+2cos2x+(cos2x)^2]dx
=x/4+(sinx)/4+(1/8)∫(1+cos4x)dx
=x/4+(sinx)/4+x/8+(sin4x)/32+C
=3x/8+(sinx)/4+(sin4x)/32+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-12-13
展开全部
∫cos^4xdx=∫[(1+cos2x)/2]^2dx
=1/4∫[1+2cos2x+cos^2(2x)]dx
=1/4∫[1+2cos2x+(1+cos4x)/2]dx
=1/8∫(3+4cos2x+cos4x)dx
=1/8(3x+2sin2x+1/4*sin4x)+C
=1/4∫[1+2cos2x+cos^2(2x)]dx
=1/4∫[1+2cos2x+(1+cos4x)/2]dx
=1/8∫(3+4cos2x+cos4x)dx
=1/8(3x+2sin2x+1/4*sin4x)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询