x^2+x-3=0,求(3-x^2-x^3)/(x-1)的值
展开全部
解:已知变形为:x^2=3-x,两边同乘以x,得:x^3=3x-x^2=3x-(3-x)=4x-3,
所以
(3-x^2-x^3)/(x-1)
=[3-(3-x)-(4x-3)]/(x-1)
=(-3x+3)/(x-1)
=-3(x-1)/(x-1)
=-3
方法二:x^2+x=3
(3-x^2-x^3)/(x-1)
=[3-(x^2+x^3)]/(x-1)
=[3-x(x+x^2)]/(x-1)
=[3-x*3]/(x-1)
=-3(x-1)/(x-1)
=-3
所以
(3-x^2-x^3)/(x-1)
=[3-(3-x)-(4x-3)]/(x-1)
=(-3x+3)/(x-1)
=-3(x-1)/(x-1)
=-3
方法二:x^2+x=3
(3-x^2-x^3)/(x-1)
=[3-(x^2+x^3)]/(x-1)
=[3-x(x+x^2)]/(x-1)
=[3-x*3]/(x-1)
=-3(x-1)/(x-1)
=-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询