f(x)连续,|f(x)|在x0处可导,则f(x)在x0出可导。如何证明?
1个回答
展开全部
函数x0处可导的条件是
lim
△x→0
f(x0+△x)-f(x0)/△x
存在
当f(x)≥0时
|f(x)|就是f(x)
此时在f(x)
x0处可导
当f(x)<0时
|f(x)|是-f(x)
现在只需证明
若-f(x)在x0可导
则f(x)在x0也可导
设g(x)
=-f(x)
由可导的条件知
lim
△x→0
g(x0+△x)-g(x0)/△x
存在
设lim
△x→0
g(x0+△x)-g(x0)/△x=c
即lim
△x→0
-f(x0+△x)+f(x0)/△x=-lim
△x→0
f(x0+△x)-f(x0)/△x=c
所以lim
△x→0
f(x0+△x)-f(x0)/△x=-c
即lim
△x→0
f(x0+△x)-f(x0)/△x存在
而f(x)可导的条件就是lim
△x→0
f(x0+△x)-f(x0)/△x
存在
所以f(x)连续,|f(x)|在x0处可导,则f(x)在x0处可导
lim
△x→0
f(x0+△x)-f(x0)/△x
存在
当f(x)≥0时
|f(x)|就是f(x)
此时在f(x)
x0处可导
当f(x)<0时
|f(x)|是-f(x)
现在只需证明
若-f(x)在x0可导
则f(x)在x0也可导
设g(x)
=-f(x)
由可导的条件知
lim
△x→0
g(x0+△x)-g(x0)/△x
存在
设lim
△x→0
g(x0+△x)-g(x0)/△x=c
即lim
△x→0
-f(x0+△x)+f(x0)/△x=-lim
△x→0
f(x0+△x)-f(x0)/△x=c
所以lim
△x→0
f(x0+△x)-f(x0)/△x=-c
即lim
△x→0
f(x0+△x)-f(x0)/△x存在
而f(x)可导的条件就是lim
△x→0
f(x0+△x)-f(x0)/△x
存在
所以f(x)连续,|f(x)|在x0处可导,则f(x)在x0处可导
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询