设可微函数z=z(x,y)由方程
设f为可微函数,z=z(x,y)是由方程y+z=xf(y∧2-z∧2)所确定的隐函数,证明xσz/σx-zσz/σy=y...
设f为可微函数,z=z(x,y)是由方程y+z=xf(y∧2-z∧2)所确定的隐函数,证明xσz/σx-zσz/σy=y
展开
1个回答
展开全部
证明:因为z=z(x,y)是由方程y+z=xf(y²-z²)所确定的隐函数,所以
两边同时对x求导有∂z/∂x=f(y²-z²)-2xzf'(y²-z²)∂z/∂x=(y+z)/x-2xzf'(y²-z²)∂z/∂x,故[x/(y+z)]∂z/∂x=1/[1+2xzf'(y²-z²)]
两边同时对y求导有1+∂z/∂y=xf'(y²-z²)(2y-2z∂z/∂y),故f'(y²-z²)=(1+∂z/∂y)/(2xy-2xz∂z/∂y)
联立两式消去f'(y²-z²),有[x/(y+z)]∂z/∂x=1/[1+(z+z∂z/∂y)/(y-z∂z/∂y)]=(y-z∂z/∂y)/(y+z)
所以,化简移项即有x∂z/∂x-z∂z/∂y=y
两边同时对x求导有∂z/∂x=f(y²-z²)-2xzf'(y²-z²)∂z/∂x=(y+z)/x-2xzf'(y²-z²)∂z/∂x,故[x/(y+z)]∂z/∂x=1/[1+2xzf'(y²-z²)]
两边同时对y求导有1+∂z/∂y=xf'(y²-z²)(2y-2z∂z/∂y),故f'(y²-z²)=(1+∂z/∂y)/(2xy-2xz∂z/∂y)
联立两式消去f'(y²-z²),有[x/(y+z)]∂z/∂x=1/[1+(z+z∂z/∂y)/(y-z∂z/∂y)]=(y-z∂z/∂y)/(y+z)
所以,化简移项即有x∂z/∂x-z∂z/∂y=y
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询