求微分方程xy''+y'=0的通解(提示:可降阶)
1个回答
展开全部
解法一:∵xy''+y'=0
==>xdy'/dx=-y'
==>dy'/y'=-dx/x
==>ln│y'│=-ln│x│+ln│C1│
(C1是积分常数)
==>y'=C1/x
==>y=C1ln│x│+C2
(C2是积分常数)
∴原方程的通解是y=C1ln│x│+C2
(C1,C2是积分常数);
解法二:∵令t=ln│x│,则xy'=dy/dt,x²y''=d²y/dt²-dy/dt
代入原方程得
d²y/dt²-dy/dt+dy/dt=0
==>
d²y/dt²=0
==>dy/dt=C1
(C1是积分常数)
==>y=C1t+C2
(C2是积分常数)
==>y=C1ln│x│+C2
∴原方程的通解是y=C1ln│x│+C2
(C1,C2是积分常数)。
==>xdy'/dx=-y'
==>dy'/y'=-dx/x
==>ln│y'│=-ln│x│+ln│C1│
(C1是积分常数)
==>y'=C1/x
==>y=C1ln│x│+C2
(C2是积分常数)
∴原方程的通解是y=C1ln│x│+C2
(C1,C2是积分常数);
解法二:∵令t=ln│x│,则xy'=dy/dt,x²y''=d²y/dt²-dy/dt
代入原方程得
d²y/dt²-dy/dt+dy/dt=0
==>
d²y/dt²=0
==>dy/dt=C1
(C1是积分常数)
==>y=C1t+C2
(C2是积分常数)
==>y=C1ln│x│+C2
∴原方程的通解是y=C1ln│x│+C2
(C1,C2是积分常数)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询